
AD-A274 036

DTIC
ELECTE

UE2 31993 1

GRAPHICAL TOOLS FOR
SITUATIONAL AWARENESS ASSISTANCE

FOR LARGE BATTLE SPACES

THESIS

Brian B. Soltz, Capt, USAF

AFIT/GCS/ENG-93D-21

93 .12 22 j19 93-31006

AFIT/GCS/ENG/93D-21

GRAPHICAL TOOLS FOR

SITUATIONAL AWARENESS ASSISTANCE FOR

LARGE SYNTHETIC BATTLE SPACES

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of 'he

Requirements for the Degree of Accesidn For

Master of Science in Computer Science NTIS CRA&I

Uianio ,'Led
Justification

B •

By
Brian B. Soltz Di:t ibJt.on I

Captain, USAF Ava;iabitIty Gc
Avail P., dior

Dist Sp~ c al

December 1993 A ___

=vrC irALs 111L.-to MD 3

Approved for public release; distribution unlimited

PREFACE

I am indebted to several people for their assistance and cooperation with this

project. In particular, I would like to thank Capt Kirk Wilson, for his insight in the

design and implementation of the Synthetic BattleBridge that made integrating my

system simple and straight forward. There are also a number of other people who I

would like to thank for their support and comradely: Mr Steve Sheasby, Mr Dave Doak,

Capt Matthew Erichsen, Maj Michael Gardner, Capt William Gerhard, Capt Allain Jones,

Capt Andrea Kunz, Capt Keith Meissner, and Capt Mark Snyder. I would also like to

thank LtCol Martin Stytz and LtCol Phil Ambum for their guidance and understanding

over the last hard five months.

I especially wish to thank my wife, Marie, and my daughter, Jennifer, for their

extreme patience, understanding, and love. Without their support, I would not have been

able to go as far as I did, they were my inspiration.

Brian B. Soltz

TABLE OF CONTENTS

Preface ... ii

List of Figures .. viii

List of Tables .. x

Abstract .. xi

I. Introduction ... 1

1.1 Background .. 1

1.2 Problem Statem ent ... 2

1.3 Summary Of Current Knowledge .. 3

1.4 Scope .. 4

1.5 Approach and M ethodology .. 4

1.6 M aterials and Equipm ent .. 6

1.7 Thesis Organization ... 7

II. Background .. 9

2.1 Introduction ... 9

2.1.1 Fog of W ar ... 9

2.1.2 Distributed Synthetic Battlespace Environment 11

2.2 Situational Aw areness Tools ... 14

2.3 Synthetic Virtual Environm ents ... 15

2.3.1 Computation Distribution Approach 17

2.3.2 The Synthetic BattleBridge ... 22

2.3.3 Other Virtual Battlespace Environments 30

2.4 Fuzzy Logic Controllers and Their Uses 30

2.4.1 Key Definitions and Concepts .. 31

2.4.1 Linguistic Evaluations in Risk Situations 32

iii

2.4.2 Use of Color for Decision Making 32

2.4.3 Use of Weights as Applied to Fuzzy Rules 34

2.4.4 Implementation of a Feedback Controller 35

2.5 Conclusion .. 35

Il!. System Design .. 37

3.1 Introduction .. 37

3.2 Design M ethodology ... 40

3.3 Library U nit Structure .. 41

3.3.1 Configuration Unit ... 41

3.3.2 Input U nit ... 43

3.3.3 Control Unit .. 49

3.3.4 O utput U nit .. 51

3.3.5 Com putational Unit ... 53

3.4 Class Structure ... 54

3.4.1 FL_Sentinel Class ... 54

3.4.2 FLS JPlayer Class ... 58

3.5 Conclusions .. 60

IV . System Im plem entation ... 62

4.1 Introduction ... 62

4.2 Data Structures and Implementation Decisions 62

4.2.1 Configuration Unit ... 62

4.2.2 Input U nit ... 66

4.2.3 Control Unit .. 67

4.2 .4 Output U nit .. 77

4.2.5 Com putation Unit .. 84

4.2 .6 FLSentinel Class ... 90

iv

4.2.7 FLS -Player C lass .. 95

4.3 System Integration ... 100

4.3.1 Form s 2.1 .. 100

43.2 Synthetic BattleBridge .. 101

4.3.3 O bjectSim and Perform er .. 104

4.3.4 O bject M anager ... 105

4.3 .5 M odel M anager ... 106

4.3 .6 Sound G eneration Facility .. 107

4.4 System U tilities .. 107

4.4.1 Sentinel Watchspace Configurer 108

4.4.2 D IS Entity M anager .. 108

4.5 System O perations ... 110

4.6 Conclusions .. 112

V . Results and Recom m endations ... 113

5.1 Introduction .. 113

5.2 O bservations ... 113

5.3 Problem s Experienced .. 114

5.4 Future Research and D evelopm ent .. 115

5.5 Conclusion ... 117

A ppendix I: U sers M anual ... 118

1. O verview .. 118

2. U ser M odifiable Configuration Files ... 118

2.1 O bjecL Types.dat ... 118

2.2 defaultareas.dat .. 118

2.3 xyzFLSdefault-areas.dat .. 119

v

3. Running With the SBB .. 119

3.1 Startup .. 119

3.2 Control Panel Navigation ... 120

3.2.1 Config Sentinel .. 121

3.2.2 Sentinel ... 122

3.2.2.1 Low Detail Level Control Panel 123

3.22.2 High Detail Level Control Panel 124

3.2.2.2.1 Add Watchspace Control Panels 125

3.2.2.2.2 Attachment Control Panel 126

3.2.2.2.2.1 Move Watchspace 128

3.22.2.2.1 Modify Watchspace Radius 130

3.3 Shutdown ... 130

Appendix II: Programmers Manual ... 131

1. Overview .. 131

2. Requirements ... 131

2.1 Hardware Requirements ... 131

22 Software Requirements .. 132

2.2.1 Commercial Software Requirements 132

2.2.2 Non-Commercial Software Requirements 132

3. Directory Structure ... 132

4. Programming Particulars .. 135

4.1 Global Data Structures ... 135

4.2 Global Defines and Constants .. 138

4.3 Structured Programming Unit Procedures 146

4.3.1 Configuration Unit .. 147

43.2 Input Unit .. 148

vi

43 .3 Com putation U nit .. 149

4.3.4 O utput and Control U nit 150

4.4 O bject-O riented Class M ethods ... 152

4.4.1 FLS _Player Class .. 152

4.4.2 FLSentinel Class ... 153

5. Integration With the Synthetic BattleBridge 153

6. Com piling and Linking .. 164

Bibliography .. 165

V ita .. 172

vii

LIST OF FIGURES

Figure

2.1: The Environment Distribution Approach to the Implementation of a

Distributed Synthetic Environment ... 13

2.2: The Computation Distribution Approach to the Implementation of a

Synthetic Environment .. 18

2.3: Generalized System for Constructing a Virtual Environment 20

2.4: Observatory Node Components ... 26

2.5: Synthetic BattleBridge Architecture Schematic 28

3.1: Display Showing GO Level of Interrupt for "Island" Sentinel After a Rule

Fires, and the Sliding Scales for a Set of Sentinels 39

3.2: System Design for the Overall Sentinel System 42

3.3: Entity and Designation Checker for the DIS Standard 45

3.4: Flat Earth Containment Calculation With Cylinder 47

3.5: Round Earth Containment Calculation With Cylinder 48

3.6: Class Structure For The Sentinel System .. 55

4.1: Fuzzy Category Configuration Control Panel ... 64

4.2: Fuzzy Category Weight Browser and Editor ... 65

4.3: Icon Level Control Panel ... 70

4.4: Low Detail Level Control Panel ... 70

4.5: High Detail Level Control Panel .. 71

4.6: Attached Control Level Control Panel .. 73

4.7: Sentinel Watchspace Assessment History Strip Chart 75

4.8: Modify Radius Control Panel .. 75

4.9: Move Sentinel Watchspace Pre Control Panel .. 78

4.10: Move Sentinel Watchspace During Control Panel 78

viii

4.11: Add Sentinel Watchspace Pre Control Panel ... 79

4.12: Add Sentinel Watchspace During Control Panel 79

4.13: Virtual Keyboard and Change Watchspace Name Control Panel 80

4.14: Sentinel Watchspace Assessment Status Bar Color Components 83

4.15: Process Model for Computing Interest Level for a Sentinel's

W atchspace ... 86

4.16: Fuzzy Set Defining a Medium Threat by Armor 88

4.17: Capability Contour Color Mixing Graph ... 93

4.18: Capability Contour Map One .. 94

4.19: Capability Contour Map Two .. 94

4.20: Capability Contour Map Three ... 95

4.21: Sentinel Watchspace Cylinder Representation 98

4.22: Sentinel Watchspace Cage Representation ... 98

4.23: Transparent Sentinel Watchspaces in Fly Mode 99

4.24: Transparent Sentinel Watchspaces With Active Players 99

4.25: ObjectSim Created Performer Rendering Tree 106

4.26: Sentinel Watchspace Configurer ... 109

4.27: User Control Panel Navigation ... Ill

1.1: Startup Icon Control Buttons ... 120

1.2: Fuzzy Category Configuration Control Panel ... 121

1.3: Entity Weight Browser Control Panel ... 122

1.4: Low Detail Level Control Panel .. 123

1.5: High Detail Level Control Panel ... 124

1.6: Pre-Add Control Panel ... 125

1.7: During-Add Control Panel ... 126

1.8: Name Change and Virtual Keyboard Control Panels 127

ix

1.9: A ttached Control Level Control Panel .. 128

1.10: Pre-M ove Control Panel .. 129

1.11: During-M ove Control Panel .. 129

1.12: M odify Radius Control Panel .. 130

H .1: Thesis Directory Structure ... 133

LIST OF TABLES

Tabe

3.1: Sentinel Interrupt Levels ... 52

4.1: Sentinel Interrupt Ranges ... 82

4.2: Sam ple Fuzzy Logic Rules .. 89

11l: Directory Description 134

11.2 #defins and const ... 138

11.3: Configuration Unit Procedures ... 147

11.4: Input Unit Procedures ... 148

11.5: Com putation Unit Procedures .. 149

11.6: Output and Control Unit Procedures .. 150

11.7: FLS_Player Class M ethods .. 152

11.8: Fl_Sentinel Class M ethods ... 153

AFIT/GCS/ENG/93D-21

ABSTRACT

As virtual environments grow in complexity and size, users are increasingly

challenged in assessing situations in large-scale virtual environment. This occurs because

of the difficulty in determining where to focus attention and assimilating and assessing

the information as it floods in. One technique for providing this type of assistance is to

provide the user with a first-person, immersive, synthetic environment observation post,

that permits unobtrusive observation of the environment without interfering with the

activity in the environment. However, for large, complex synthetic environments, this

type of support is not sufficient because the portrayal of raw, unanalyzed data in the

virtual space can overwhelm the user. To address these problems, this thesis investigates

the types of situational awareness assistance that need to be provided to users of large-

scale virtual environments. A technique developed, is to allow a user to place analysis

modules throughout the virtual environment. Each module provides summary

information to the user concerning the status of the section of the virtual environment that

the module was assigned to monitor. The prototype system, called the Sentinel, is

embedded within a virtual environment observatory and provides situational awareness

assistance for users within a large virtual environment.

xi

GRAPHICAL TOOLS FOR

SITUATIONAL AWARENESS ASSISTANCE FOR

LARGE SYNTHETIC BATTLE SPACES

1. INTRODUCTION

1.1 Background

With the end of the Cold War a few years ago, military doctrine has changed

dramatically. No longer is the perceived threat that of one large, powerful enemy. Instead,

due to the breakup of the Soviet Union block, many alliances have fallen to the wayside

which has renewed many long standing religious and ethnic hatreds that were subdued in

the old Soviet regime. Other political and economic problems throughout the world have

also caused many areas of unrest that could also be a potential threat to US and allied

interests.

Planners, both military and civilian, develop scenarios to plan for these threats.

They are forced to consider the use of armed forces covering the spectrum from full scale

war such as Desert Shield and Desert Storm to humanitarian relief efforts like those used in

Somalia. This unprecedented use of armed forces coupled with decreasing defense

expenditures, force military leaders to seek innovative and economical alternatives to

tactical battlefield analysis, mission planning, and training systems. One area receiving

increased attention is the use of virtual reality or synthetic environments.

One such synthetic environment viewer, the Synthetic BattleBridge (SBB), allows

the user to view the battlefield as a passive observer. This works fine for small scale

simulations as the user can observe almost everything in the battlefield. However, when

the simulation addresses a large scale battlefield, the user can see only what the simulation

can show them for the specific current view. If the user tries to back away to see the whole

battlefield, then the resolution of the objects in the simulation become blurred and distorted.

Therefore, the user can not make valid analysis of the risk assessment for the current

simulation.

The answer to such a problem is to have another system globally watch over the

entire simulation and provide situational awareness assistance for the user of the current

simulation. This other system can then inform the user of other areas (watchspaces) with

moderate or high risk, that they might want to view. Therefore, the other system can take

the burden of watching the entire simulation off the user and allow them to concentrate on

specific areas within the simulation. A Fuzzy Controller System, known as the Sentinel,

accomplishes this situational awareness assistance for the user of the overall battlefield

simulation.

1.2 Problem Statement

Design and implement a Fuzzy Controller System (Sentinel) to perform situational

awareness assistance of pre-defined areas (watchspaces) within a synthetic environment.

The particular synthetic environment targeted is the SBB. The Fuzzy Controller (Sentinel)

and support subsystems convey situational awareness information to the user with the

efficient use of on-screen displays and sound cues. The on-screen displays use a variety of

colors to quickly let the user make an assessment of risk for each of their pre-defmed

watchspaces of interest. The Fuzzy Controller System (Sentinel) works in the backgroumid

while the SBB processes and views the current simulation. Therefore, the user uses the

Fuzzy Controller (Sentinel) as a situational awareness tool that can be turned on or off as

needed.

2

1.3 Summary Of Current Knowledge

This thesis topic ties together three areas of research: the use of virtual reality and

synthetic environments to allow the user an immersive view of a simulation, the use of

fuzzy logic as a situational awareness tool, and the use of human/computer interface

techniques to enhance overall system usability.

The first area uses virtual reality and synthetic environments to provide a user with

a three-dimensional representation of moving and stationary vehicles dispersed over a large

area of terrain. The environment accommodates increasing levels of resolution for both the

terrain and the vehicles of interest and provides the user with an intuitive and modifiable

interface. The SBB developed by Capt. Rex Haddix in 1992 addresses many of the issues

involved with a synthetic environment. Current work by Capt. Kirk Wilson ([Wil93]) and

I continues where Capt. Rex Haddix left off by making the SBB easier to use, more

capable, and technically applicable to users in the field.

The second area deals with using fuzzy logic to develop a system that can make

situational awareness judgments based on predetermined risk categories. Fuzzy logic can

do risk analysis based on variables that are conceptually vague in nature. Current papers

describe how fuzzy logic combines the uncertainty of given variables with user studies that

indicate what actions would actually take place. Using this information, we can design a

Fuzzy Controller (Sentinel) that for a given set of fuzzy inputs, it produces a single fuzzy

output. The fuzzy output is then attached to a color code and bar length that is viewed by

the user. The user then mentally converts this color and length information into a relative

assessment of the risk or activity in that watchspace. In other words, we can take actual

numbers, perform fuzzy set operations on them to produce a single relative number, that

the user can process in terms relative to themselves.

The third area, human/computer interface techniques, ties together the first two

areas mentioned above. How we display information to the user depends upon the type

3

and importance of the information. Visual and sound cues instantly give the user

information needed about the current state of the system. Determining what visual and

sound cues to use is the key to portraying information in a timely and efficient manner.

1.4 Scope

This thesis is the first attempt to apply fuzzy logic to a synthetic environment to

enhance situational awareness for the user. It is limited in capabilities and is primarily

being used as a proof of concept for the theory and techniques involved with fuzzy control

and situational awareness. Additionally, the Fuzzy Controller (Sentinel) itself depends

upon limited user studies to fine tune the system. However, this thesis shows the practical

application of the Fuzzy Controller System (Sentinel) to an actual synthetic environment,

namely the SBB.

1.5 Approach and Methodology

The approach taken for the design and implementation of the Fuzzy Controller

(Sentinel) to the SBB, breaks up the Fuzzy Controller System (Sentinel) into a number of

distinct independent modules. Each one of these modules is then designed, tested, and

implemented separately using pre-defined interface specifications between modules.

Finally, the integration of all the modules together takes place along with testing the system

as a whole. These modules are then encapsulated from the user by the use of object-

oriented classes that ties together the whole system.

The Fuzzy Controller System (Sentinel) is composed of five distinct modules. The

first module, the Configuration Unit, takes in and translates user configuration information

into the configuration data structure used by the system. The second module, the Input

Unit, uses the configuration data structure along with current object information about the

4

simulation to calculate the fuzzy input parameters needed by the Fuzzy Logic Computation

Unit. This information feeds into the third module, the Fuzzy Logic Computation Unit,

which does the actual risk or activity assessment of the fuzzy parameters for each pre-

defined watchspace of interest. This information passes to the fourth module, the Output

Unit, that processes the watchspace assessment value received for each watchspace and

visually displays this information on the screen to the user. This module also takes care of

any interrupt handling that needs to go on based on watchspace assessments. The fifth

module, the Control Unit, is the actually interface between the user and the Fuzzy Logic

(Sentinel) watchspaces.

The nature of the Output Unit module indicates that further subdivision of the

module could take place. This subdivision takes into account the various different displays

that are needed to convey information to the user. We also need to take into account the

various sound cues required by the system. Overall, the Output Unit becomes the vital link

between the Fuzzy Controller System (Sentinel), the synthetic environment system (SBB),

and the user.

The classes play an important role in encapsulating the design and implementation

from the user. There are two classes that make up the Sentinel system. The first class, the

FL_Sentinel Class, is the main class that manages all the overhead and communication

between the modules (units), the FLS_Player Class, and the user. The second class, the

FLSPlayer Class, handles all the rendering issues associated with the Sentinel

watchspaces. It is the FLSPlayer Class that the Control Unit mentioned above has the

most impact on. User commands are interpreted from the Control Unit, communicated to

the FLSPlayer Class through the FLSentinel Class, and then acted upon by the

FLSPlayer Class that in turn displays the effects of the user selected function.

5

1.6 Materials and Equipment

The implementation of the Sentinel using fuzzy logic set theory requires that the

extra computational power needed to do the fuzzy logic does not slow down the rendering

process. If the use of the Sentinel system causes a significant drop in frame rate, then the

overall driving system, the SBB in this case, becomes less of a time analytical tool and

more of tool that performs analysis on the simulation data. In other words, if we wish to

use the Sentinel as a situational awareness tool to help the user make command decisions

about the current state of the simulation, then it must present information to the user in as

close to real time as possible without distortion.

There are many things that the Sentinel system introduces into the driving

application that could have a profound effect on the frame rate. Possible areas most

effecting the overall frame rate are as follows:

"* Mathematical computations need by the fuzzy logic computational unit and

Sentinel volume watchspace containment functions;

"* Graphics rendering pipeline as affected by the display of additional Sentinel

user control panels and display of Sentinel watchspace geometric

representations;

"* Z-buffering algorithm as it pertains to displaying transparent Sentinel

watchspaces in such a way as to make then visible by all other transparent

obje.t" in the scene;

"* User input delays associated with the Sentinel user control panels.

The frame rate issue is -," key concern when trying to develop a system that will

evolve to having over 8000 objects in the simulation at a time in the near future. Frame

rates that are too slow look more like a series of pictures rather then a smooth animated

scene. This slowness injects jerkiness into the scene and cause user input to be hampered.

To achieve an acceptable frame rate, tOe Sentinel system, along with its driving application

6

(SBB), was designed to work with a multiprocessor parallel workstation. There are

currently two such workstation types for which the system can be run on:

"* The Silicon Graphics IRIS 4D/440VGXT Workstation with two or more

processors,

"* The Silicon Graphics Onyx RealityEngine 2 N Workstation with two or more

processors.

Both workstations provide a hardware graphics pipeline and sufficient RS-232

ports for the external devices required.

The software was written in C++. It can be compiled with the AT&T C++,

version 2.1 or 3.0.1, compilers. It should also be noted that the two workstations above

can be equipped with either the version 4.0.x or 5.x Silicon Graphics Operating System.

Once again, the software was implemented with these various workstations, compilers, and

operating systems in mind.

1.7 Thesis Organization

The reminder of this document describes the steps taken to create the Sentinel

system. Chapter two describes user interactions with virtual environments and how they

can be extended through the use of situational awareness tools. Chapter two also talks

about the use of Fuzzy Logic Controllers in the decision making process. Chapter three

describes the design of the Sentinel system and how it pertains to both structured

programming and object-oriented methodologies. Chapter four describes the actual

implementation of the Sentinel system with the Synthetic BattleBridge as the driving

application. Chapter five discusses results and conclusions of integrating and using the

Sentinel system. Appendix I provides a users manual for a brief tutorial on using the

Sentinel system with the driving application (SBB). Finally, Appendix II provides a

7

programnmrs manual that talks about how to compile, modify, use certain method calls,

and change the parameters of the Sentinel system.

8

I. RACKGROUNi

2.1 Introducton

As virtual environments grow in complexity, size, and scope users need assistance

in comprehending, assessing, and reacting to the state of the environment. One technique

for providing this assistance is to provide the user with a first-person, immersive, synthetic

environment observation post, an observatory, that permits unobtrusive observation of the

environment without interfering with the activity in the environment. However, for large-

scale, complex, rapidly changing environments, such as those that occur when simulating a

fire, natural disaster, air traffic control, or a battle, this type of support is insufficient. To

address this problem, this thesis investigates the types and forms of situational awareness

assistance that should be provided to users in these types of synthetic environments. The

prototype system provides situational assistance for users within the large virtual

environment that exists within the Advanced Research Projects Agency (ARPA) Distributed

Interactive Simulation project ([Tno881)l.

2.1.1 Fog of War

A battlespace is an excellent driving application for our investigation because of the

complexity and uncertainty inherent in the environment. The state of the battlespace is in

almost constant flux and the important portions of the battlespace differ from moment to

moment. For example, at one instant an important activity might be a reconnaissance

event, which could be followed by the beginning of an aerial operation, a ground

engagement, a dogfight, or the arrival of a resupply mission. The "interest" value of these

1This ARPA project is designed to simulate large battlespaces for the purpose of evaluating weapons and tactics,
performing integrated engineering and design, performing top-down decision making and analysis, and
evaluation of emerging technologies.

9

and other potentially important events is not assessed in isolation by the user. Instead, their

interest value is judged in relation to other events happening at the same time in the same

location as well as events happening at the same time at other locations. Because of the

complexity and uncertainty, large staffs and management mechanisms have been developed

to assist commanders in assessing the state of a battlespace. However, these mechanisms

have not been completely successful, because uncertainty about the state of the battlespace

remains. This confusion has been termed the fog of war. The fog arises from two

complementary problems, information accuracy and information complexity. Information

accuracy is a problem caused by uncertain data, which can arise from deliberate enemy

deception, observational error, conflicting data, and errors within the information reporting

mechanisms. This thesis does not address the problem of confusion about the state of a

battlespace that arises from information accuracy problems. This thesis, however,

investigates a means for allowing correct situation diagnosis within an informationally

complex environment, which is currently difficult due to the rapidly changing and complex

information inherent in the battlefield.

Confusion caused by information complexity occurs because the data about a

battlespace, or any other large, thickly populated, active environment such as an airport, a

large building fire, or satellites in orbit, is complicated and rapidly changing. Because of

these characteristics, the state of the battlespace must be comprehended swiftly and its

important aspects grasped quickly. The task is further complicated by the fact that the state

continuously changes and the location of important information is unknown from moment

to moment. The problem of information complexity can be addressed using techniques for

data reduction and analysis that have been proven in the fields of computer graphics and

human-computer interaction. To test this hypothesis, this thesis effort intends to develop

and evaluate techniques for reducing information complexity and supporting situational

assessment within a distributed battlespace synthetic environment (discussed below).

10

2.1.2 Distributed Synthetic Battlespace Environment

Situational assessment assumes the identification of a problem that requires some

action. The commander must decide on some course of action based on what occurs in the

battlespace. To determine the state of the battlespace, environmental cues, such as radar,

infrared, text, and observer sightings, are sampled to obtain a situational assessment, or

diagnosis, of the state of the battlespace. An accurate diagnosis requires the perception of a

large number of cues, which in turn must be interpreted against a knowledge base in long-

term memory to accurately construct a mental model of the situation. To form a mental

model of a combat situation, the commander needs to be aware of the disposition and

capability of his own forces and the disposition and capability of the enemy forces.

However, human characteristics work against this process. In forming the mental model,

subtle yet critical aspects of the battlespace may be missed, leading to incorrect decisions.

Humans have limits of attention that may cause them to process cues that are not the most

relevant ([Sol9 1]). Nevertheless it is vital for correct decision making that the user process

not the most salient symptoms, but instead the most relevant ones because they provide the

most important diagnostic information concerning the nature of the situation. Users may

also be biased by some event that they have stored in their long term memory. The user

may thus be heavily guided in his/her cue seeking based on some hypothesis that may have

already been tentatively chosen. This results in a bias to seek those cues that confirm the

pre-determined, but possibly false, hypothesis1 . Therefore, one of the greatest challenges

faced by a commander assessing a situation in a battlespace (whether real or virtual) is

determining where to focus attention. This research is intended to help the user to

counteract these natural tendencies through the use of virtual environment based training

1The best way to test whether a hypothesis is true is to determine whether characteristics, or symptoms, exist that
prove it false ([Was72l).

11

and commander situational awareness aids that are applicable to both virtual and real-world

battlespaces.

Historically, commanders have been prepared to face the fog of war using field

exercises and board-simulations. However, these techniques do not accurately portray the

diversity or complexity of the battlefield environment. In recognition of this problem and

to address this concern, ARPA sponsored the SIMINET distributed virtual environment

project ([Tho88]). The environment distribution approach, portrayed in Figure 2.1, uses

several networked virtual environment stations (using long-haul and/or local connections)

to form a single environment wherein each node has its own local model of the

environment and there are no clients or servers (see [Bes92], [Bla92], [Bla93], [Fa193],

[Pra92], [Tho88], and [Zyd92]). Each distributed simulation host node broadcasts the

significant changes in the host's state to all the other nodes, thereby allowing the

participants to interact at a distance and to maintain a local model of the distributed virtual

environment that is accurate. Each distributed simulation participant, or host, has the same

terrain description 1, the same geometric description for the actors2 in the simulation, the

dead reckoning model used by each of the other actors, and identification for the actors

involved in the simulation. To accurately maintain the state of the simulation, each host

knows the velocity and position of the other actors.

Anecdotal evidence from this ARPA project suggests that virtual environment

training effectively prepares individuals and small groups for the complexity and confusion

of the battlefield. This evidence is supported by studies of pilots and air traffic controllers

that prove that training in a realistic simulation environment transfers to the operational

environment ([Car73]) quickly and inexpensively. The requirement that the simulators

offer realism is vital to their successes, and is based on Thorndike's common elements

1Or as close as possible depending upon the rendering capabilities of the simulators. Standardization and

interoperability of terrain descriptions remains an open research issue.
2 AIso called players in some of the literature.

12

theory ([Tho3 1]) that suggests that transfer occurs to the extent that a simulator and the

environment simulated share common elements.

Terrain model

Identification for all actors

Geometric models for all actors

Local actor's dead reckoning model

Dead reckoning model for other actors

Velocity and position of all actors

ts

Comncain Syse

Disributed Disributed Disributed Disributed
Simulation Simulation Simulation Simulation

Host Node Host Node Host NodeHotNd

Figure 2.1: The Environment Distribution Approach to the Implementation of a
Distributed Synthetic Environment.

13

2.2 Situational Awareness Tools

Little work has been done to date to develop tools that help higher level

commanders comprehend the large stream of data fed to them about a battlespace. The

information presented to a commander during a battle should be as easy to assimilate as the

information presented to a fighter pilot during air-to-air combat. The information should be

clear, concise, readily usable, and directly to the point of winning the engagement.

Irrelevant information should be excluded and low level information should be coalesced

into higher level information. One way of viewing the situation is that the unit is to the

commander as the airplane is to the pilot. Therefore, it would be appropriate to provide a

set of instruments that inform the commander about his unit, much like the pilot's gauges

tell him the status of the aircraft. The commander should have devices to assist in

identifying and resolving problems occurring on the battlefront for the unit. For example,

one "fault" might be that enemy forces are approaching the unit and the commander needs

to assess the danger to the unit and the impact on his mission of the presence of the

approaching force. This thesis effort develops tools to help the commander assess and

respond to real-world warfighting situations as well as gain and maintain situational

awareness.

Plan-view displays and high-altitude observation posts that view the synthetic

environment have been used as one means of improving the commander's situational

awareness. Typically, these displays either obscure detail in the battlespace or present the

entire contents in one view. The first approach runs the real risk of hiding important

information from the commander. The second provides little help since the commander

must still sort through all the information. In my opinion, these techniques do not

adequately assist a commander in forming and maintaining a mental model of the

battlespace. I concluded that users need help determining where to focus their attention and

assessing the importance of information outside their field of view but should be aware of.

14

To reduce batdespace informational complexity, and also improve the commander's

situational awareness, one of the goals for this thesis project is to allow the commander to

monitor, in real-time, interesting activities within the battlespace without exceeding the

commander's capacity to process the data.

2.3 Synthetic Virtual Environments

A survey of all the systems that are currently using virtual environment technology

is beyond the scope of this thesis. The review is limited to previous work that is

particularly relevant to this research. The work at the University of North Carolina at

Chapel Hill (UNC), ([Air9O], [Ber93], [Bro86], [Bro88], [Chu89], [Mos86]), is relevant

because of its aim of improving the understanding of complex, spatial data using virtual

environment technology. There are several interesting similarities even though their

application areas are architectural design, molecular modeling, ard radiation treatment

planning and the research reported in this work supports battlespace visualization,

understanding, and analysis.

Comprehending the complexity and interplay between elements of large-scale

realistic plans, whether for a building or a military action, is beyond the ability of most

people, let alone perform an in-depth analysis for potential conflicts. Architects have

addressed this problem using 2D blueprints to convey plans to builders and clients.

However, this form of presentation still places a significant cognitive load upon the viewer,

and generally leaves the non-architect without a grasp of the spatial relationships in the

structure. Radiation treatment planning is a delicate procedure, requiring the doctor to

focus high voltage radiation beams upon a patient so that a tumor is killed without

destroying surrounding healthy tissue. Because of the spatial complexity of the task and its

health risk, radiation treatment planning is performed using templates (protocols) that the

doctor and technicians modify to suit each patient's situation. The UNC group posits that it

15

might be advantageous to be able to generate treatment plans for each patient by interacting

with a portrayal of the patient's anatomy (as depicted using 3D medical imaging in a virtual

environment) to place the treatment beams in space. This type of interaction may allow the

physician to construct a better treatment plan because some of the uncertainty of beam

interactions is eliminated through visualization and interaction. Finally, in molecular

modeling the location of active sites, the bending of bonds, and the interaction of molecules

are extremely complex spatial tasks. Here, the UNC research seeks to enhance

understanding by allowing a researcher to view the molecule(s) in a virtual environment

and sense the strength of interactions with a force-feedback device. In general, the UNC

approach seeks to present sensory events so that they are processed within the context of

the user's knowledge of the real 3D world, thereby using previous 3D experiences to give

meaning to sensory experiences within the synthetic environment. Their expectation is that

a virtual environment system can provide a valuable adjunct to the 2D presentation of

complex 3D data.

Other virtual environments have been described in the literature. These serve a

variety of purposes, such as immersing an observer in an environment to observe the

geometry of curved space-time ([Bry92b]), CAD ([Wei89]), telerobotics and virtual

workstations ([Fis86a], [Fis86b]), examining n-dimensional virtual worlds ([Fei90a],

[Fei90b]), drawing in virtual space ([Sch82]), and performing surface modeling and virtual

environment construction from within a virtual world ([But92]). Environments to enable a

person to enter and use a virtual laboratory to conduct experiments ([Mer90]), to perform

aircraft mission planning ([Zel92]), to conduct cooperative group work using distributed

synthetic environments ([Fah93]), to view and interact with atomic-scale data acquired with

a scanning-tunneling microscope ([Tay93]), and to analyze complex economic and

business data ([Smi91]) have also been described in the literature. Pausch's work

([Pau9 1]) describes the design of a low-cost virtual environment interaction testbed built

16

around inexpensive components for the display device, computing engine, user motion

tracking, and gesture input. Like the more recent of these projects, the goal is to allow the

user to vicariously experience a virtual world that is outside the everyday experience of

humans. The effect of the experience is heightened by immersing the user within an

environment that can not be experienced in the real world because the environment

portrayed is several orders of magnitude larger or smaller than the human user. In this

implementation, the virtual environment is several orders of magnitude larger than the

human user.

2.3.1 Computation Distribution Approach

The virtual environments that have investigated both the distribution of

computations and the dispersion of the virtual environment among multiple hosts are related

to the thesis work currently being conducted. The computation distribution approach, see

Figure 22, typically partitions the workload among several cooperating machines using a

single shared model of the virtual environment (as in [App92a], [App92b], [Bla9O],

[Cod92], and [Hil92]). Figure 2.2 portrays some of the computations required to realize a

synthetic environment that can be distributed among multiple processors. In some cases,

the computations indicated by one CPU bubble could, and should, be accomplished by

several CPUs to minimize the throughput bottleneck caused by some computations, such as

rendering. The model need not necessarily reside in a single shared memory but may be

divided among several machines, wherein each machine only possesses that portion of the

model that is relevant to its tasks in effectuating the virtual environment. The cooperating

machines typically use message passing to update the portions of the distributed model

residing in other machines.

17

CPU CPU CPU CPU

Position & State
Viewpoint iewpoint-B Computations user output

Computation Environment for Other Inomfiace
CPU RP Actors CPU CPU

User Voice User Gesture User Tracking Sound
Commands Commands Computations

Networktc State of Other Actors State of Host Observatory

§1liareff M~mmory/§(•a

Figure 2.2: The Computation Distribution Approach to the Implementation of a Synthetic

Environment.

In the distributed computation implementation, consistency of the environment

between CPUs is not a major concern since all the machines share a common description of

the environment and the environment is readily updated. However, computational

bottlenecks may arise out of the need to update the model's shared description in memory

using either a low-bandwidth network or the computer's bus before computing the model's

new state and rendering the environment. The distributed environment implementation

must solve the environment consistency problem, which can only be partially addressed by

dead-reckoning since visual display consistency is also a problem (see [Fer92]). The use

of multiple CPUs to perform communication, audio, user interface, consistency

computations, and rendering is commonly used within distributed simulation environments

18

to maintain an acceptable frame-rate and to present the user with a reasonably accurate

portrayal of the virtual environment. In this regard, the distributed environment systems

build upon the work of the distributed computation systems and contribute to the realization

of distributed interactive simulations.

Distributed interactive simulation uses heterogeneous hosts using a common

synthetic environment definition to insert a wide variety of both human and computer

controlled actors into a single, shared synthetic environment. The hosts are connected

using high-speed (currently Ti) data links and use a common simulation and network

protocol to communicate. The protocols currently in use are DIS and SIMNET (see

[BBN92], [Bla93], [Har9l], [McD90], [McD91], [Mil88], and 'EE standard 1278-

1993). Each host maintains a description of the virtual environment, the actors in the

environment, and the motion of the actors in the environment. To reduce network traffic to

manageable levels, each actor informs all the hosts of the appropriate dead-reckoning

algorithm to use to predict its motion between broadcasts. Each actor runs its own dead-

reckoning algorithm and broadcasts new position and velocity information whenever the

position predicted by the algorithm significantly differs from the actual position or at the

end of a time-out period.

Figure 2.3 contains a conceptual diagram of the overall set of systems used to

implement a distributed synthetic environment. The initial processing takes an input terrain

description (typically Defense Mapping Agency digital terrain and elevation data) and

converts it into a polygonal description (possibly multi-resolution, see [Fal93]) of the

terrain to desc.ibc 'he static elements of the synthetic environment.

19

Terrain 1
Description

sDataset Polygonal

Generation Descriptions of Environent
the Actors Specifications

Multi-resolution
Polygonal

Terrain
Description Virtual

Environment
Generator

Virtual Environment
Description

Legend
Computed Dataset

Software System
External DataII

Observatory Node Op0odeo

Figure 2.3: Generalized System for Constructing a Virtual Environment.

The Virtual Environment Generator combines the terrain description with the

environment specifications and polygonal descriptions of all the actors in the environment

to complete a description of the synthetic environment. The complete description contains

multi-resolution descriptions of the terrain, man-made structures, and the actors in the

20

synthetic environment The Virtual Environment Generator output files can be used for

rehearsal, planning, and training of operators and observers of the virtual environment.

Within the observer component, the user enters a virtual world that displays the synthetic

environment and the movement of the actors in the environment The operator component

also provides the user with a display of the synthetic environment and the movement of

actors in the environment, but it constrains the operator to the types of motion permitted by

the user's host actor in the virtual environment. Operator components can be either human-

controlled, computer controlled, or human-controlled with computer assistance.

After the virtual environment is constructed, it becomes an integral part of the

distributed simulation environment. However, because the nodes on the network use

different types of simulators to instantiate their actors there are differences in terrain

descriptions and accuracy of motion depiction that occur because of the differences in

processing speed and display fidelity. Resolving these problems in a distributed simulation

is a current research problem. Using the network, individual operators and computerized

simulations of actors in the synthetic environment can interact. Furthermore, computer-

controlled and human-controlled operator components can be fed data from previous

simulations (actual or simulated) that used the same (or similar) synthetic environment.

The results of the individual operator interactions with each other and with the

computerized simulations can also be used to update the virtual environment database and

to maintain a log for later reference.

Clearly, one way to monitor the action in a distributed synthetic environment is to

use an actor. However, a better technique is to use an observatory. Unlike an actor, which

is required to broadcast information about its state, an observatory is a receive only node.

Its presence within a distributed synthetic environment does not increase the network

bandwidth requirement nor does it interfere with the activity at any location. An

observatory allows a user to position him/herself anywhere, at any time, in the environment

21

and watch the activity in that area. The user of an observer component is unconstrained in

the type of motion that can be performed. Most immersive observatories are limited to

allowing a user to jump from actor location to actor location and "see" the action from the

actor's point of view. Immersive observatories can also be used to gain a wide-field

perspective on the activity in the synthetic environment.

2.3.2 The Synthetic BattleBridge

The work in reducing battlespace information complexity began with the

development of the Synthetic BattleBridge (SBB) ([Had93]). The point of departure for

developing the SBB was the realization that implementation of a virtual environment

requires the seamless melding of several different technologies. Users of the environment

must be given visual and audio cues that are sufficiently accurate to entice the user to

suspend disbelief and accept the synthetic environment illusion as being real. In addition,

sensors to determine the user's position and orientation and a mapping for them from the

real to synthetic world are needed. Finally, devices that allow the user to control

appropriate portions of the environment, his/her actor in the environment, and the display

of the environment are needed. With this in mind, they chose to implement a synthetic

environment using commercially available technology and object-oriented design and

programming in order to maintain flexibility in the implementation and in the devices that

we can attach to it for user input as well as visual and aural feedback. This choice was

appropriate since it has allowed us to refine the Synthetic BattleBridge design over time to

its present state. The Synthetic BattleBridge is an immersive observatory for large spaces,

much as the Virtual Windtunnel is an observatory for aerodynamics effects around an

airframe, ([Bry9l], [Bry92a] and [Lev92]), and the Virtual Planetary Explorer is an

observatory for satellite data about planetary surfaces ([Hit92], [Pic92]). The same concept

has also been used for interactive walkthroughs of architectural models ([Air9O], [Fun92],

22

[Tel9 1]) and analysis of molecular docking ([Ber93], [Bro9O], [Min88]). The SBB project

was begun in recognition of the fact that the situational displays then in use placed a large

demand on the cognitive processes of their users. Part of this shortfall stems from the fact

that three-dimensional (3D) data is presented in two-dimensions, thereby forcing users to

mentally construct a 3D model of the action within a space. This mental transformation can

be error prone, particularly during times of stress. The Synthetic BattleBridge project's

goal is to develop a system that allows users to make decisions in an accurate and timely

manner by providing several different types of cognitive support for performing analysis.

The Synthetic BattleBridge will eventually allow users to evaluate and interact with large-

scale (up to several hundred thousand cubic miles) synthetic environments as well as to

visualize the activity within a real-world battlespace of the same size. The SBB is designed

to provide a visually rich environment that is useful as a training and operational system to

a wide variety of users, from firefighters, air traffic controllers and orbital analysts to a

combat theater commander.

The SBB is a platform for developing and evaluating advanced user interfaces,

information aggregation techniques, and information presentation techniques for presenting

synthetic environment generated data in a clear, concise, and accurate manner. The SBB is

also a platform for devising and investigating techniques that facilitate information

manipulation and user interaction in a virtual environment. The Synthetic BattleBridge

functions as a simulation and training platform that provides a capability for participants to

interact in real-time when performing group and individual tasks involving mission

visualization, mission planning, and training for commanders and planners. Finally, the

SBB is a platform that can be used operationally to help users comprehend and evaluate a

real-world battlespace. So, for example, a commander can move to any location in a

battlespace, observe the activity there, review the information presented about the area

being visualized, and analyze the situation without interfering with the action that is

23

occurring. Or, as another example, air traffic controllers at major airports throughout the

world are faced with an overwhelming amount of data concerning the positioning and

status of aircraft and ground vehicles and the availability of runways and navigational

systems. Because of the complexity of the environment and the rapid changes that occur in

it, the controller is usually in the tenuous position of mentally filtering the data before

processing and acting upon it. This filtering process can result in the oversight of critical

information with life threatening consequences. A partial solution to these problems is a

real-time three-dimensional representation of the control-space that depicts the aircraft and

ground vehicles in the environment.

To provide these desired capabilities, the Synthetic BattleBridge immerses a person

within a 3D, large-scale, virtual battlespace using local- and wide-area network technology

and general-purpose workstations with Polhemus sensors, voice control, audio cueing, and

color helmet-mounted displays. By design, the SBB is capable of interacting with

distributed simulations taking place on the ARPA Distributed Simulation Internet (DSI).

Because we immerse the user, we can capitalize upon the human perceptual system's

physiological cuesI and depth cues provided by the traditional computer graphics

techniques 2 to impart a feeling of being within the computer generated environment. These

technological capabilities provide the SBB with a wide range of realistic and varied

scenarios for evaluating its operation and for training because the commander is faced with

a situation that in some ways more closely resembles real-world situations than the field or

board exercises of the past.

The goal for the user interface and display is to give the user the impression that the

battlespace and each object in it are instrumented to provide the information needed by the

user to make decisions. The SBB is intended to function as a perfect assistant, providing

l1Te cues commonly cited as being triggered are movement parallax, motion perspective, and binocular parallax
(aka. stereo vision).
2Such as the use of shading, shadows, hidden-surface removal, and perspective computations to render images.

24

requested information about the battlespace as it is asked for. The information can be low-

level, unanalyzed data or data that has been analyzed by an autonomous agent. The only

restriction placed on the available information is that data not available in the real world is

not to be provided to the user. This restriction is necessary so that the user does not

become dependent upon types of information that are not available within a real-world

battlespace. Currently, unanalyzed information is presented to the user about the objects

and terrain. Regarding the objects, the SBB can provide information about armament,

speed, position, damage, type, alliance, force concentrations, missile (ground and air)

launch points, and direction of movement of formations. For the terrain, it is portrayed

itself, its roughness/smoothness, and major buildings, roads, railroads, etc. in the synthetic

environment.

This thesis describes how the Synthetic BattleBridge's immersion effect has been

augmented with a tool for the user of the SBB that provides a capability for remotely

monitoring the activity at specific locations in a space and allowing the user to view

aggregate information about the space. These capabilities allow the SBB user to determine

where activity is occurring in a large, complicated space and to assess its importance. The

first capability helps the user to detect critical activity in areas beyond visual range. The

second capability provides the user with an aid for analyzing activity over a large area.

These characteristics equate to increased situational awareness.

The SBB places the user within the synthetic environment using the components

depicted in Figure 2.4. The figure also presents a notional portrayal of the possible

interactions across the Distributed Simulation Network. The network interconnectivity

allows the observatory to witness and analyze distributed simulations composed of

interactions between one (or more) previously recorded simulation sessions (via log tape

replay) as well as with both human and computer controlled simulation objects 1. The user

t Computer controlled simulation objects are also called semi-autonomous forces or SAFOR.

25

support functions allow it to generate displays of desired portions of the environment and

provides the interface that the user employs to control the observatory. We have identified

eight generic objects (components) for the observatory node. These objects are: Network

interface, Local environment database, Observatory position and viewpoint, User interface,

Local situation, Models for all actors, Observatory viewpoint-based rendering, and

Display drivers.

Apple
Newi Pso aMacintosha

Silicon 2.4: tO NTSC Head Mounten
Graphics •DisplayONYX/RE 11•mmmm

SHears

Display Items Sesr Oprao

SSensor Inputs and '

Display Alterations]

CommandsJoystick

Apple

Maintoshan
Microphne

Figure 2A4 Observatory Node Components.

26

The network interface module implements the network interface using a simulation

protocol (DIS, SIMNET, etc., (see [Bla93], [McD90] and [McD9l]). The network

interactions allow it to maintain an accurate, local copy of the virtual environment. The

local environment database module is responsible for updating the database at the node to

reflect the database changes broadcast across the network. The observatory position and

viewpoint detection module is part of the interface between the synthetic environment and

the user. It responds to the user's movement and/or orientation commands and passes

them to the display unit for use in rendering the scene. The local situation module

maintains the status of the local synthetic environment (the situation within visible and/or

sensor range) for use by the rendering module. The local situation database is a subset of

the global database maintained by the local environment database update module. The other

actors module holds the descriptions of other actors in the battlefield. This information

includes, but is not limited to: vehicle exterior description, dead-reckoning algorithms, and

sensor capabilities. The observatory viewpoint-based rendering module calculates an

image that portrays the synthetic environment from the viewpoint of the operator. This

module performs all the image rendering functions that are required for the type of

observatory that the node supports. For an immersive observatory, the module performs

hidden-surface removal, texturing, shading, stereo display (if desired), and shadowing.

For a "true 3D" observatory, as in [Hob93I, the type of rendering computations are

determined by the "true 3D" display device.

The major SBB components and their interactions are presented in Figure 2.5. The

component choices have been made with the intention of providing the user with a direct

manipulation hands-free interface. A Macintosh computer, with the Voice Navigator voice

recognition system and a wireless microphone is connected to the Silicon Graphics

computer to provide the user with hands-free control of the system. Several display

technologies are available for synthetic environment display: a locally built color LCD head

27

mounted display (HMD), the -olhemus Looking Glass"TM fiber optics color CRT-based

HMD, and the Fake Space Labs BOOM2MTM monochrome CRT-based system. Viewer

position and orientation when using the HMDs is obtained using a Polhemus 3-Space

Tracker TM magnetic sensor attached to the HMD. The BOOM uses an internal mechanically

linked tracking system to determine viewer position and orientation. Viewer movement

through the display volume is assisted by a hand-held two button mouse for the HMDs or

the interaction buttons on the BOOM.

Humnan-controlled Observatory
Operator Nods(s) Nodets)

Network Interface
Local Environaent Database

Observer Position & Viewpoint

User Interface
Local Situation (weather, other

actors, etc)

Models for Other Actors
Observatory Operator

Viewpoint-Based Rendering
Display Drivers

Figure 2.5: Synthetic BattleBridge Architecture Schematic.

28

This combination of movement techniques reduces the amount of physical

movement required by the user and helps ameliorate the limited range problem encountered

when using magnetic tracking technology. The user's movement is unrestricted, the user is

allowed to move to any location in the virtual battlespace at any velocity without physical or

material restriction on the movement. There is also a terrain following feature, this allows

the user to move along the terrain at a low altitude at high speed. This type of movement is

sometimes useful to users when moving between locations.

The SBB is an immersive virtual environment observatory. The SBB is designed

to allow users to monitor, analyze and evaluate large-scale (several hundred thousand cubic

miles) virtual environments. The initial goal for the SBB was to give a user a sense of the

spatial orientation, type, motion, and distribution of objects in a synthetic environment.

Key issues included the ability to display real-time data at interactive display rates and to

provide a very large scale, immersive environment with a large range of object types, sizes,

and speeds. The SBB provides these capabilities by computing vehicle position, motion

and velocity data and presenting this information, in real-time, using a three-dimensional

rendering of the battlespace. The raw, unanalyzed information is presented using a

combination of visual icons and text. For example, threat envelopes are displayed for

active surface-to-air missile systems (SAMS) and anti-aircraft-artillery (AAA) vehicles.

Envelopes are derived from unclassified, published data and assume maximum capabilities

without consideration of terrain or atmospherics. Radar envelopes are displayed for active,

emanating SAMS, AAA, and radar systems. Radar envelope display criteria is the same as

that for threat envelopes ([Had93]). Locators, which are semi-transparent bubbles, are

placed around objects to help the user to locate various objects in the environment. The

locators can be activated selectively for different types, or classes, of objects. Aircraft trails

are displayed for all active aircraft and missiles. Trails show the flight path of the vehicle

over Ie previous fifteen seconds. Missile tracks are displayed for all active and de-active

29

missiles ([Had93]). Tracks show the entire trajectory of the missile from initial activation

to deactivation or impact. The tracks remain viewable for the entire user session. The user

is also allowed to interactively designate up to one hundred locations in the battlespace as

viewpoints (both a position and view direction are specified) at any time during the

distributed simulation session and can move to any of them at any time using a voice

command. The system also allows users to attach to any vehicle and move with it as

though physically tethered to it. A plan-view display option is also provided, the user can

call up this form of display at any time.

2.3.3 Other Virtual Battlespace Environments

Others have also built virtual environments to allow operators to visualize

battlespaces as well as interact and orient themselves within battlespaces (see [Bes92],

[Bla92], [Fa193], [Pra92], [Pra93], [Tho881, and [Zyd92]). The work reported by Falby,

Pratt, and Zyda ([Fal93], [Pra92], [Pra93I, [Zyd92]) on NPSNET complements our own,

especially in regard to their work in implementing large-scale virtual environment

battlespaces on commercial workstations. They implemented a distributed system that

allows users to view the activities of multiple actors within a medium-scale virtual

battlespace as well as place actors into the environment. They provide a 2D plan-view to

allow users to orient themselves within an environment and auditory cues to enhance the

sense of realism provided by the visualization of the environment. They do not provide

other assistance to help the commander determine where to direct his/her attention or to help

the commander to assess a situation.

2.4 Fuzzy Logic Controllers and Their Uses

The Fuzzy Logic Controller is intended to mimic, as much as possible, the way

human beings actually think and interact with their environment. The basic concept stems

30

from the fact that humans do not think in "crisp" terms. When humans evaluate something,

they do not give that evaluation a single value, but rither they assign a range of values to

that concepL At the boarders of this range they make decisions as to whether something

belongs or does not belong in uncertain or "fuzzy" terms. For example, what do we

actually mean when we say a person is tall? Where is the start point and end point for the

concept of "tall"? In other words, humans think in terms of degrees of membership which

relates directly to the way they perceive the world around themselves. Fuzzy Logic

Controllers try to duplicate this thought process by developing membership functions and

rules that can be associated with the concepts that we are trying to model.

The uses for Fuzzy Logic Controllers stem from the need to model control

problems for which no mathematical model exists nor can the model be developed in a

reasonable time ([Ait92]).

The advent of fuzzy control systems has dramatically transformed the

control problem from one of exact mathematics, to the encoding of inexact,
commonsensical inference rules. This approach, besides being intuitive, has the
rewards of flexibility, ease of implementation, and elegance. Furthermore, an
increasing number of complex processes that could not be previously automated are
now machine controlled by fuzzy control systems ([Tob92]).

2.4.1 Key Definitions and Concepts

The following list contains key definitions and concepts needed to fully understand

the following paragraphs:

"* Fuzzy Set: a class of objects with a continuum of grades of membership.

"* Membership Function fA(x): associates with each object a real number in

the interval [0, 11, with the value of fA(x) at x representing the grade of

31

membership of x in A. Thus, the nearer the value of fA(x) to unity, the higher

the grade of membership of x in A.

Linguistic Terns: words which represent a quality that can be ordered into a

natural hierarchy (large, medium, small, etc.).

2.4.1 Linguistic Evaluations in Risk Situations

C cfa purposed that the calculation of the global risk of a structured system can be

found by evaluation the risk of each individual component ([Gar92]). This can be

accomplished in three steps. The translation of natural language expression to fuzzy set

notation is the first step. The next step is to combine all the fuzzy sets into a single

weighted value which in itself is a fuzzy set. The final step is to take the results from the

previous step and match that fuzzy value to the nearest natural expression that was

introduced in the first step. This final result is the risk of the entire system based on the

individual components of the system ([Gar92]).

The key to this process is in determining the proper set of natural expression to be

used. If the set is too restrictive or partitions the set space into broad categories then a good

deal of fuzziness is lost. We can therefore uses hedges to further partition up the natural

expressions. For example, instead of just using "big" we could use "very big", "extremely

big", or "more or less big". The terms before "big" are the hedges which further break up

the definition of the term "big" thereby introducing more fuzziness into the natural language

([Gar92]). These terms are commonly called linguistic variables.

2.4.2 Use of Color for Decision Making

Benson shows how through the use of fuzzy set theory, subjectively defined

categories can be presented to an analyst to help support decision making. For display

32

data, Benson shows how the fuzzy nature of color can represent data in various categories

on a graphics terminal for visual inspection. Benson achieves this by giving two examples

in which the degree of color visually represents the subjective data presented.

The first example shows how the deliberate blurring of category boundaries can

correspond to how a color can gradually transform from one recognizable color to another.

In this example the use of color going from yellow to orange to red is used. The blurring

of data (color) represents the uncertainty or fuzzy nature of the information. Benson states

three reasons for the deliberate blurring of data:

In general, deliberate blurring is a useful strategy for at least three reasons:

undue precision is not needed for the purpose at hand; the data itself is

imprecise; and the level of anxiety in decision making is reduced.

([Ben82: 430])

The second example is an extension of the first example. However, in the second

example we now combine several subjective variables or categories together to get an

overall evaluation of all the data represented. Each variable contains a color that represents

the degree of fuzziness of the associated data. Once all the information contains the correct

color coding, manipulation of all the fuzzy variables can be performed. By using various

fuzzy mathematics, the variables combined represent the overall evaluation of the data.

Also, note that by changing the mixture of the variables to represent the importance of some

variables over others, we can come up with a different color coding of the overall

performance.

Benson presents us with a color coding of membership functions for simple

linguistic terms and expressions. Benson then shows how color can represent the different

degrees of linguistic terns as applied to the fuzzy set concept. ([Ben82: 432]) For

example, if we let red represent the greatest degree of membership and yellow represent the

lowest degree of membership (without being zero), then a blurring of color from yellow

33

through orange to red instantly gives us the information we need about the particular

relationship.

Using fuzzy set theory to analyze and display subjective categories of data for

decision support and decision making frees the analyst from many cognitive and memory

tasks. The analyst can simply view the color coding and understand all the needed relations

between the data at hand. The use of color as a visual representation of the fuzzy concept

works extremely well. The natural perception of one color slowly blending to another in a

constant degree of change relates to the idea of the degree of membership for a fuzzy set

going from zero to unity. Combine this with the fact that humans can perceive color

information faster and more accurately then looking at raw data, and we get an efficient and

useful way to display subjective information. Color allows the viewer to shift easily

between two perceptual attitudes: association (disregarding variation in order to see

similarities) and selection (distinguishing variation to isolate similar instances). ([Ben82:

436]) This by itself allows the analyst the ability to look at the subjective date from various

view points and perspectives.

2.4.3 Use of Weights as Applied to Fuzzy Rules

This subsection deals with the use of weights applied to the rule base that controls

the processing of the overall fuzzy value to be associated with the system in question. A

number of papers address the use of experts that evaluate the rule base and assign values to

each rule. The values represent the importance of the rule to the overall evaluation of the

system. A higher value indicates a rule that should be considered more important to the

calculation of the finally fuzzy value. These evaluations of the weights are themselves

expressed as fuzzy numbers. In this way there is no loss of generality when the final

calculations are performed ([Ram92]).

34

The model proposed by Ramakrishnan, uses the opinions of multiple experts on a

small subset of the entire rule base in assessing the weights for the system ([Ram92]). On

the other hand, the paper by Qiao uses a four step process to improve the rule base:

(1) translating the operators' experiences into fuzzy linguistic form directly;

(2) monitoring and summarizing the control behavior of the operators;

(3) modeling the process to be controlled, using fuzzy set theory;

(4) self organizing in running of the control systems. ([Qia92J)

Both these authors present test results that show the fuzzy control system obtains an

optimized performance according to what the designers hoped, and this demonstrates the

effectiveness of fuzzy set theory in imitating human thinking ([Qia92J, [Ram92]).

2.4.4 Implementation of a Feedback Controller

This unique method for implementing a Fuzzy Logic Controller stems from the idea

used in the design of amplifiers in electronic circuits. If the Fuzzy Logic System has both

fuzzy inputs and fuzzy outputs, then we should be able to feedback the output information

back into the Fuzzy Logic Controller. Then, just like in a amplifier, this new input to the

controller helps stabilize the output results. This then gives us a self correcting Fuzzy

Logic Controller. This mimics the way human beings perform a task. The human being is

constantly making small adjustments to the way they are doing things based on the results

they are getting back from their current output ([Afi92]).

2.5 Conclusion

By combining the idea of situational awareness with the fuzzy set theory concept, a

system can be developed that could mimic scouts reporting in from the field during a large

battle to report troop movements in areas of interest. We can combine the idea of the use of

color stated by Benson, to represent the level of activity, threat, or risk in a given area of

35

the battlespace. Commanders could then glance over to the corner of the screen to see if

any of the "hot spots" they defined are active. The degree of color associated with the area,

along with its bar length, would give commanders a relative feeling about the current

importance of the area. The rest of this thesis describes just how this is possible, along

with the design and implementation of the actual Sentinel system.

36

Ill SYSTEM DRSIGN

3.1 Introduction

Complex skills, such as problem solving, are organized hierarchically ([And8 1],

[Car92], [Mic88], [Ras86]). Situational awareness usefully characterizes complex problem

solving skills. This thesis effort has been working to determine and incorporate the

strategies and sub-goals of the hierarchical skill organization used by commanders to assess

a battle situation and maintain situational awareness. A fuzzy logic processed semantic

network 1 , called the Sentinel 2 , within the Synthetic BattleBridge (SBB), captures and

processes the resulting problem solving hierarchy. Each of the semantic nodes has a

different input to the level of threat in the Sentinel's watchspace at any one time.

Consider the situation of a battlefield commander who must make decisions based

upon data gathered using several different modalities. Making these decisions requires that

the commander mentally combine the information to produce an overall mental model of a

battlespace. There are several reasons for the difficulties encountered in forming the

model, determining what the enemy is doing, and reacting appropriately, or even pro-

actively. First, the important portions of the battlespace environment differ from moment

to moment. At one instant it might be an enemy reconnaissance event, which could indicate

the beginning of an enemy aerial operation, a ground engagement, a dogfight, or the arrival

of a resupply mission. Second, the commander does not assess in isolation the "interest"

value of this and other potentially important enemy and friendly force actions. Instead, the

commander judges their values in relation to other events happening at the same time, in the

1The semantic nodes of the network characterize an object, situation or concept. For example, a situation in an
area may have stabilized, the enemy lines may have been penetrated or nearly penetrated , or events along a front
may have settled down. These nodes can also be characterized as linguistic variables, which is well suited to a
fuzzy logic representation, and are all relevant aspects of situation assessment.
2 The Sentinel contains the fuzzy logic-based situation assessment tools and is designed to monitor the activity
within an operator-designated portion of the battlespace. The function of the Sentinel is described later.

37

same location as well as events happening at the same time at other locations. Third,

humans have a time and space limited focus of attention, meaning they are limited by the

amount of information perceived and processed at any time. Because the commander is

limited in the amount of information that can be perceived and processed at any time, the

commander can miss or forget important information about the battlespace. Fourth, the

search and discrimination task the commander must accomplish are serial tasks, so

processing time increases linearly with the number of objects in the battlespace. Since it

takes relatively constant time to process each object, the basic task of locating and

discriminating between objects can become easily overwhelming for the commander, let

alone assessing their importance. As a result of these four factors, commanders usually

lack complete situational awareness of events outside their field of view. Therefore, the

development of a software tool, called the Sentinel, addresses these factors and reduces

their negative impact on effective decision making. The Sentinel addresses the need for

tying together several, disjointed data gathering systems to present a clear, consistent

insight into the action within a real battlespace or a distributed simulation-based battlespace.

The Sentinel portion of the SBB helps address the four concerns mentioned above

by providing an information consolidation and analysis capability. The commander can

place each Sentinel in an area of the battlespace that the commander identifies as a possible

location of a future important activity (a watchspace). Figure 3.1 depicts a Sentinel

positioned within a notional battlespace. The transparent shaded cylinder volume shows

the location of the Sentinel's watchspace within the battlespace. The watchspace

assessment bar shows the interest level of activity within each of the watchspaces in the

battlespace. The "Island" watchspace, shown in highlighted color in Figure 3.1, has a high

level of interest as indicated by the length of the status bar and its color. The other four

Sentinels (not pictured) have computed a much lower level of interest for their

watchspaces. As activity occurs within each Sentinel's watchspace, the Sentinel

38

automatically assesses the importance value of the total activity in its space and signals this

value to the commander. The commander thereby relieves himself of the necessity of

trying to determine the important areas of the battlespace from the raw data, he can make

his assessment based upon the ratings provided by the Sentinels.

I.& o ff•* .

Figure 3.1: Display Showing GO Level of Interrupt for "Island" Sentinel After a Rule

Fires, and the Sliding Scales for a Set of Sentinels.

Since each Sentinel can assess the activity of friendly and enemy forces and

evaluate these actions, the assessment it provides the commander is a consolidated

assessment of the total activity within a watchspace. Therefore, the commander can

determine the relative importance of the different portions of the battlespace by simply

examining the ratings provided by the Sentinels1I and reviewing previous Sentinel reports

10f course the commander must insure that all important areas are monitored.

39

to gain a perspective on the progress of the battle. Note that the Sentinel does not make

decisions, it consolidates data and functions as a situational awareness aid for the

commander. The Sentinel performs its information aggregation function using fuzzy logic.

The rest of this chapter pertains to the development issues of the design. Section

3.2 discusses the overall design methodology for the entire Sentinel system. Section 3 3

and 3.4 talks about the design of the structured programming units (libraries) and the

object-oriented class hierarchy, respectively. Finally, section 3.5 states some conclusions

about the overall design of the Sentinel system. Chapter four addresses the implementation

of the Sentinel system.

3.2 Design Methodology

The design of the Sentinel takes into account classical structured programming

techniques, as well as an object-oriented methodology. This section describes the current

design in relation to the above mentioned techniques and methods. This section also

addresses the chosen data structures associated with the design of the Sentinel as they apply

to design decisions.

A mixture of structured programming techniques and object-oriented methods

encompasses the overall design methodology for the Sentinel. The reasons for the mixture

of the two technologies stem from the use of an interface tool that does not support object-

oriented classes and methods. The next chapter on the implementation of the Sentinel

system addresses this interface tool called "Forms Library: A Graphical User Interface

Toolkit for Silicon Graphics Workstations." ([Ove92])

The basic design consists of a number of structured programming units (libraries)

connected using an object-oriented class structure. This object class then controls how the

driving application (in this case the Synthetic BattleBridge (SBB)) implements and uses the

Sentinel. By doing this, we have encapsulated non-class procedures and functions inside

the class methods. This then only allows access to these non-class procedures and

40

functions through method calls by the driving program (SBB). While this is not a pure

object-oriented design, (the driving application could make calls to the non-class

procedures and functions itself), if the driving application applies strict adherence to using

only the class method calls provided, then access only occurs through those method calls.

Figure 3.2 shows the overall design of the Sentinel system. The structured

programming units show only communication into and out of the Sentinel class structure.

The only communication with the driving application (SBB) is through the Sentinel class

methods. As long as this applies totally in the driving application (SBB), it appears that the

Sentinel has a complete object-oriented design.

3.3 Library Unit Structure

The Sentinel system comprises a number of structured programming units compiled

as libraries. These library units make up most of the input, output, control, and fuzzy logic

computation, needed by the Sentinel system. The main reason why these library units

could not compile as object-oriented classes, stems from the type of user interface

developed for the Sentinel system. A non-object-oriented tool (forms 2.1) created this user

interface. Due to this, the functionally of the system splits up into five functional areas or

units: configuration, input, control, output, and computational.

3.3.1 Configuration Unit

The configuration unit's main task is to set up all the configuration information as

needed by the Sentinel system. It does this by reading in a number of configuration and

default files that set up the locations of the initial Sentinel watchspaces and the weight

factors for all the different types of entities possible in the simulation. The system reads in

this information, and enters the information into the appropriate data structures as needed

by the other library units in the Sentinel system.

41

Conceptual View Of Ov:erall Syste
Cofi uat io UserInutDaa Configuration Configuration

Unit -14WUnitFiles

Parameters

Current Entity

Fuzzy]Logic State Information

~*Computation

Unit

~ e.

Interrupt Level & Input
Current Watchspace

Figursen 3.2:lystei einfrteOerlsetnlSse

42e

The Sentinel system diso performs error checking on the configuration files to make

sure the files are reasonably correct and consistent. The Sentinel system checks closely the

initial placement of Sentinel watchspaces. The positioning of a Sentinel watchspace

location in the simulation at start up happens by one of two methods. The first method

requires the lat-long position of the center point of the watchspace. The Sentinel system

thoroughly checks this lat-long for input errors. The second method requires an x-y-z

position of the watchspace. The Sentinel system then places that watchspace in the scene

according to a local origin.

The Sentinel system can use both ways with either a flat earth or a round earth

representation for the simulation. However, the x-y-z positioning currently uses a

configuration file. Changes to this file happen manually with the use of a text editor. The

Sentinel system accomplishes lat-long positioning through a stand alone utility that allows

the user to set up watchspaces interactively. Other error checking includes making sure that

the number of watchspaces specified match the number of watchspaces requested, the

number of watchspaces specified does not go over the maximum number of Sentinel

watchspaces allowed by the Sentinel system, and the radius for each watchspace falls

within the maximum radius size currently allowed for a Sentinel watchspace.

The configuration unit also supplies a tool by which the user can change player

entity weights for the fuzzy logic assessment during execution of the simulation. This

allows the user to make changes that determine how the computational unit views certain

player entities and designations. Chapter four on implementation gives details on how the

uscr can change these weights.

3.3.2 Input Unit

The input unit's main task is to take in current information on the status of the

simulation and parse this information into data structures needed by the Sentinel's

43

computational unit. The input unit contains five functional areas that together perform the

above mentioned main purpose.

The first functional area is the initialization phase. This phase, as the name implies,

initializes all the data structures needed to process the current state of the simulation. It

basically sets the state of the input unit to a state that has no prior knowledge of the current

simulation.

The second functional area is the entity checker phase. In large simulations there is

the possibility of great numbers of players participating. These players may take on a very

diverse number of different types or designations. The Advanced Research Projects

Agency (ARPA) Distributed Interactive Simulation project ([Tbo88]) currently uses DIS

protocols that can broadcast more than 1000 different types of player entities and

designations. Therefore, the second phase is a first cut at limiting the number of different

entities and designations for the Sentinel computational unit cares about. The entity checker

simply goes through a series of switch statements to see if the Sentinel system needs the

current selected player entity. As shown in Figure 3.3, this visually represented a tree

traversal through all the different types of DIS entities and designations. If the Sentinel

system does not need the entity, the Sentinel system ignores the entity and the Sentinel

system checks the next player on the list.

The third functional area is the contained-in phase. Once the player has passed

through the second phase, the Sentinel system checks the player's position against each

Sentinel watchspace to see if the player currently falls within the bounds of that particular

Sentinel watchspace. There is one of two containment checks performed on the player

location depending on whether the driving application is in flat earth or round earth

representation. The Sentinel system bases both calculations on a cylinder representation of

a Sentinel watchspace (see subsection 4.2.7).

44

-::24

'-4

r ZO

91-

45

The flat earth calculation simply projects the player onto the xy plane and checks the

player's distance to the center of the Sentinel watchspace and compares it to the Sentinel's

watchspace radius (see Figure 3.4).

The round earth calculation uses three points to determine the shortest distance from

the player to a line extending from the center of the earth through the center of the Sentinel

watchspace and comparing this distance to the radius of the Sentinel watchspace. The three

points used in the calculation are the center of the earth (0, 0, 0), the center of the Sentinel

watchspace (Sx, Sy, Sz), and the current player position (Px, Py, Pz). The Sentinel

system applies the law of cosines to find the angle between the player and the Sentinel

watchspace with the center of the earth being the common point. Once we know the angle,

the shortest distance between the player and the Sentinel watchspace axis is the

perpendicular distance between them. We then use the sin function to find this

perpendicular distance. Figure 3.5 shows pictorially this calculation.

The fourth functional area is the count phase. Once a player has passed through

both the second and third phases, the Sentinel system considers this player an entity that the

computational unit needs to know about. The Sentinel system does this by adding the

player's entity weight to a count array for the particular Sentinel watchspace that the player

is in. This count array has a cell for each of the different entity types and designations

denoted as being needed for the Sentinel computational unit.

The final functional area is the processing phase. The processing phase takes place

after all the players have gone through phases two through four above. At this time, each

Sentinel watchspace has a count array indicating how many of all the different entity types

and designations fall within the Sentinel watchspace's boundaries. The Sentinel system

now processes these counts according to the information the Sentinel system needs for the

Sentinel's computational unit. This "process" can vary depending on how the Sentinel

computation unit needs the information and in what form.

46

Plaer

E ty
I............
..

I~ Proeced.la
..
....

.

.... .. S Pr.ctd) .. (.td)2 R du
Then... Plaer....e.Vlum

Else Plaer Outsie.Volum

Figure ~ ~ ~ ~ ~ ~ ~ ~ ~a.Erh.otanen.aluato.Wt.Clndr

47....

* Perpedicula
* ~ ~ ~ e Plyr itacrir

.......... /..

48S

The implementation subsection 4.23 on the computation unit discusses how the

Sentinel system performs this function for the SBB application.

3.3.3 Control Unit

The control unit's main task is to interpret user commands through the various

control panel interfaces supplied by the Sentinel system. There are two main types of

control: Sentinel watchspace manipulation and Sentinel watchspace information

visualization. The first type deals with how the user can control the actual Sentinel

watchspaces themselves, while the second type deals with how the user can visualize

information about the Sentinel watchspaces.

The user can currently control seven different operations that pertain to

manipulation of the Sentinel. The following paragraphs discuss the methodology of each

operation, while chapter four addresses the implementation.

The first operation is panel control. Panel control simply allows the user the ability

to navigate through the different Sentinel control screens that are available. It allows the

user to toggle from one mode to another. The rest of the Sentinel watchspace manipulation

operations deal with directly modifying or viewing the Sentinel watchspace of interest.

The second operation allows the user to add a new Sentinel watchspace to the

simulation provided there is still a slot available for a new watchspace. The current

Sentinel system allows for ten defined Sentinel watchspaces within a simulation. The

Sentinel system initializes the new watchspaces with a default radius of one mile that the

user can modify later as explained later on in this subsection.

The third operation allows the user to attach or detach to or from a given Sentinel

watchspace. Attachment automatically puts the user in a view directly over the Sentinel

watchspace and high enough above so that the user sees all the Sentinel watchspace's base

on the screen. Once there, the user can move about the view as they would with any other

49

view and set a preferred view point and direction for that Sentinel watchspace. Once done,

if the user goes back to that Sentinel watchspace again, they return to the view specified on

the previous attachment. The user can also detach from a Sentinel watchspace that takes the

user back to the previous view they were looking at before they attached to any Sentinel

watchspace.

The Sentinel system can only perform the remainder of its operations if the user

attaches to the Sentinel watchspace of interest. Once attached, the user can move the

watchspaces, modify the watchspace's radius, reset the watchspace's view, and finally

delete the watchspace itself. With the move and modify radius operations, the user can

apply a number of changes to the Sentinel watchspace representation. However, the user

could reset these modifications to the state they were in before the modifications took place,

by pressing a reset command located within the respective sub-control panel. Once the user

has accepted the changes with the "ok" command, the Sentinel system permanently alters

the Sentinel watchspace to reflect the new position and/or radius change. The last two

operations, reset view and delete watchspace, are final and the user can not undo them.

The reset view operation simply resets the particular Sentinel watchspace's attach view to

the initial view as described above in the attachment operation. The delete watchspace

operation removes the selected Sentinel watchspace from the simulation. The Sentinel

system declares the watchspace invalid and performs no more computations for that

watchspace. However, once deleted, the watchspace's slot then becomes available for

reuse by the add watchspace operation.

There are currently two operations that the user can control that displays visual

information about selected Sentinel watchspaces. The first operation allows the user to

view a strip chart about the history of the Sentinel watchspace as it pertains to past

watchspace assessments. The second operation presents the user with a conceptual, two

dimensional view of the capability of the player entities within the chosen Sentinel

50

watchspace. The idea here is to give the user a graphical view of how the player's entity

capabilities combined within a given watchspace of interest. The color coding and size

variation based on capability and force type (friendly, opposing) gives the user a visual

view of where the action is and where the concentrations of forces fall within the Sentinel

watchspace. Chapter four discusses the implementation of the above operations.

3.3.4 Output Unit

The output unit's main task is to translate current simulation and Sentinel data into

visual information presented on the screen to the user. The output unit has four areas of

functionally. The following paragraphs address the design of this unit in terms of its areas

of functionally: initialization, display and update of watchspace assessments, interrupt

control, and virtual keyboard control.

The first area, initialization, sets up the required global variables and data structures

associated with the output unit's functionally. It also initializes the various user interfaces

associated with the Sentinel for display and control.

The second area, display and update of watchspace assessments, is the main

display method of the visual watchspace assessments made by the Sentinel. It is here that

numeric information from the fuzzy logic computational unit is transformed into visual

information and then displayed to the user on the screen. The numeric information is

quantized into red, green, and blue components used by the display form to produce the

desired color based on the given watchspace assessment value. The update function simply

performs the display function mentioned above at periodic time intervals. The display and

update function also handles a number of maintenance items associated with the display

forms. They keep track of what display form representation is currently being view by the

user and updates that form appropriately. If the Sentinel system adds or deletes Sentinel

watchspaces, the Sentinel system modifies the necessary forms to indicated the changes to

51

the Sentinel watchspace slots. If Sentinel watchspace names change, the Sentinel system

keeps track of this and makes changes as needed.

We initially intended the fourth area, interrupt control, to be a separate unit.

However, as the design of the output unit evolved, it became apparent that the interrupt

controller would fit in as an extension of the output unit. The basics of the interrupt

controller are similar to how the Sentinel system determines the red, green, and blue

components for watchspace assessment. The numeric information acquired from the fuzzy

logic computational unit is quantized into one of four possible interrupt levels. Each of

these interrupt levels cause the Sentinel system to take some predefined actions. Table 3.1

describes each of the interrupt levels and the actions associated with them.

Table 3.1
Sentinel Interrupt Levels

Level Priority Form Displayed Actions Taken

4 None None None

3 Standby Activity Message Activity Message displayed about watchspace

2 Warning Warning: Attach Warning message displayed with question,

Preference Message Yes answer indicates attachment to watchspace,

No answer indicates do nothing

1 Go Attachment Message High priority message displayed,

Immediately attach to indicated watchspace

The messages indicated in Table 3.1 are forms message panels that require

acknowledgment or choice selection from the user. Interrupt levels 1 and 3 just require an

acknowledgment from the user to perform the task described in the message. Interrupt

level 2 requires the user to make a choice of either going to the indicated Sentinel

52

watchspace or doing nothing. Attachment to the Sentinel watchspace is described in

subsection 3.3.3. Doing nothing means to no action is taken by the Sentinel to move the

current view of the user.

There is also the added capability of a sound message being played when interrupt

levels 1 and 2 activate. The implementation subsection 4.3.6 on the Sound Class further

defines these sound messages.

The last area, virtual keyboard control, is more of an input/output task then just an

output task. The virtual keyboard allows for user input with just the mouse or any other

screen driven input device. The virtual keyboard could come in handy with applications

that employ the BOOM2MT
M or a Head Mounted Display (HMD) and some type of data

glove or flying mouse. Development of the virtual keyboard with this application is

intended for a future use than with the current state of the SBB.

33.5 Computational Unit

The computational unit is the work horse of the Sentinel system. It is here that the

Sentinel system processes all the necessary data collected. All the other units either tie into

or receive information from the computational unit (see Figure 3.2). The flow of

information is from the input unit into the computational unit and back out to the control

and output units.

The computational unit uses fuzzy logic as its means of determining watchspace

assessments for the Sentinel. Simulation information is fed into the fuzzy logic software

for each Sentinel watchspace. This information includes the numbers and types of players

currently in each watchspace as well as other information such as watchspace size and

friend to foe ratio. The Sentinel system converts these inputs into fuzzy variables and

processes them against a set of decision rules to come up with a watchspace assessment

value for each Sentinel watchspace. After this concludes, the watchspace assessment

information on each Sentinel watchspace passes to the control and output units and is then

53

displayed to the user. Chapter four has further information about the fuzzy logic

implementation within the Sentinel system.

3.4 Class Structure

As mentioned above, the Sentinel system is not a pure object-oriented system.

However, it is developed with a class hierarchy that encapsulates all the previously defined

structured programming units. In this way, provided the programmer uses just the class

methods provided, a programmer can develop an object-oriented "like" system. The

following subsections address only the classes provided by the Sentinel system. This

thesis does not address application (SBB) dependent classes.

There are two classes used by the Sentinel system. We use the first class for

encapsulation of most of the structured programming units, initialization, and

computational interfacing with the driving application (SBB). This class is called the

FL_Sentinel Class. We use the other class for manipulation of the Sentinel player object

with encapsulation of the control unit that directly controls the Sentinel players. This class

is called the FLSPlayer Class. Figure 3.6 shows the class structure and hierarchy for the

Sentinel system. The following subsections discuss these aforementioned classes and their

methods in a general way. Detailed information about the classes method calls and

variables can be found in the programmers manual in Appendix I.

3.4.1 FL_Sentinel Class

The FL_Sentinel Class derives from the AttachablePlayer Class that derives from

the Player Class (see Figure 3.6) of the ObjectSim application framework developed by

Capt. Mark Snyder ([Sny93]).

54

Player

terrain Attachable Player
Rendereroft

Model ae-o

mnit init
propagate propagate
niove.o.longjieading draw

IndeNLxlye Flitnti

danaare Share
Onttywit Ncha

FcL-r..r eit.mdumplmsefnupito

Figre3.6iCas Stutr o h enti nelSystem.

55-Whie on~bet

The FL_Sentinel Class is the overall communication module for the Sentinel

system. The class represents the main interface between the application (in this case the

SBB), the FLSPlayer Class, and the structured programming units. The design of the

FLSentinel gives the driving application access to the procedures and functions needed to

configure and initialize the Sentinel system. The class provides a method for the

application that allows for the transfer of information about the current simulation state to

the fuzzy logic computation unit of the Sentinel system. The class also provides a

communication capability with the FLSPlayer Class to allow the user to manipulate and

modify the Sentinel watchspaces as required. The class also allows for the visual

presentation of Sentinel watchspace entity capability information without going through the

FLS_Player Class. Finally, the class provides a method that allows the application to

output watchspace assessments computed by the fuzzy logic computation unit to the output

unit for presentation to the user. The following paragraphs discuss the design of tne

aforementioned functional areas. Chapter four addresses the actual implementation of this

class.

There are a number of method calls that allow the application access to the

configuration and initialization functions found in the structured programming units. These

method calls also setup the shared memory needed by the Sentinel system to pass

information between control threads associated with Performer ([McL92]). The function of

these method calls allows the Sentinel system to setup based upon configuration

information located in configuration files.

There are three types of configuration information needed by the Sentinel system.

The first type deals with the rule base needed by the fuzzy logic computation unit. The

second type deals with Sentinel watchspace placement. The last type deals with player

entity and designation capability information. Currently the Sentinel is setup to only take

into account entity weight information for capability (relative numbers between 0.0 and 1.0

56

for overall capability). This could also include various other performance factors that

would combine to give a more accurate capability measure. Once the Sentinel system reads

the configuration information into the system and places the information into the

appropriate data structures, initialization of the Sentinel system continues. The initialization

amounts to setting up the proper placement and configuration of the various user control

panels associated with the Sentinel system. It also allows the application to read in the

current state of the simulation to initialize the fuzzy logic computation unit.

The methods that allow for the computation of the Sentinel watchspace assessments

are of two types. The first type allows for the transportation of the Sentinel watchspace

information over the Performer control threads. These methods allow for changes to the

initial watchspace configurations that can then propagate to the needed control thread for

processing and visual presentation. The second type accounts for the actual processing

needed to provide information to the fuzzy logic computation unit. The method provided

for this function calls the various procedures located in the input unit. The procedures air-

called in such an order as to produce the desired results outlined for the input unit in

subsection 3.3.2.

Due to the framework of Performer, which does not allow for reading of

information across threads except by way of shared memory, information transfers from

the control unit to the FLSPlayer Class through the shared memory allocated in the

FLSentinel Class. This shared memory is mostly flags and index numbers into the global

data structures to reflect user changes of the Sentinel watchspaces. Basically, the software

sets flags and indexes in the FL_Sentinel Class and uses them in the FLSPlayer Class.

On the basis of these flags and indexes, the Sentinel takes certain actions on the appropriate

control threads within the scope of the FLSPlayer Class. The next subsection on the

FLSPlayer Class explains this further.

57

Other methods allow for the presentation of visual information within the control

threads of the FLSentinel Class. One method allows for the presentation of visual

information not directly coupled with the presentation of the actual Sentinel player as

described in the FLSPlayer Class or the output unit. There are currently two areas of

visual presentation that the FLSentinel Class directly controls. The first is the visual

representation of a two dimensional Sentinel watchspace cursor that gives the user an idea

of the size and placement of that Sentinel watchspace. The control unit functions that take

advantage of this visual cue are the following: moving an existing Sentinel watchspace and

adding a new Sentinel watchspace. The second area is the visualization of entity

capabilities within a Sentinel watchspace. It is here that the Sentinel system actually

determines and presents to the user a visual presentation of entity capabilities within a

Sentinel watchspac'- A flag set from the control unit into shared memory controls this

activation.

Finally, there is a method that allows for the transfer of computed watchspace

assessments from the computational unit through the FL_Sentinel Class and out to the

output unit for visual display to the user. A time variable that resides inside the method,

controls this periodically. Currently hardwired within the code, the time variable could

easily change to a configuration input or a user modifiable parameter that the user could

alter during the running of the program.

3.4.2 FLSPlayer Class

The FLSPlayer Class derives from the BaseNetPlayer Class that derives from

the AttachablePlayer Class that is derived from the Player Class (see Figure 3.6) of the

ObjectSim application framework developed by Capt. Mark Snyder ([Sny93]).

The FLSPlayer Class handles all functionally for the Sentinel player within the

simulation (a player that has no physical presence in the world, only a transparent "volume"

with some meaning). Functionally means how the Sentinel system renders the transparent

58

volume in the scene. Any modifications to the rendering parameters of the Sentinel player

must be taken care of by method calls from this class or setting shared memory parameters

that the FLSPlayer Class can read from inside its own methods. This class manages the

visual representation of the Sentinel player. The design functionally takes into account

creation and initialization; placement, scale, and movement (if any) in the scene; geometric

representation in the scene; and rendering order within the Performer tree.

Creation and initialization establish the initial placement of the Sentinel player within

the Performer rendering tree and within the simulation. It is here that the Sentinel system

assigns space to each Sentinel player in the Performer tree and gives that Sentinel player a

model that represents the Sentinel player in the simulation. The Sentinel system allocates

shared memory for the location of each Sentinel watchspace and sets a default scale for the

size of the geometric representation based on initial configuration parameters.

The Sentinel system controls placement, scale, and movement of the Sentinel player

with method calls that modify the particular Sentinel player attributes. Each time the

Sentinel player goes through the propagate loop, the Sentinel system evaluates these

attributes, and makes the appropriate changes as to the size and placement of the Sentinel

player within the scene.

The Sentinel system can also control the geometric representation for each Sentinel

player in the scene. By just changing the model index number used by the Model Manager

(see subsection 4.3.5) associated with the particular Sentinel player, the Sentinel player's

geometric representation changes to whatever model the new index number references.

Therefore under the current design, the Sentinel player can have as many geometric

representations as desired. However, note that the contained-in function determines what

falls within a Sentinel player watchspace. If we chose a different geometric shape, we

must call (or develop) the appropriate contained-in function to insure that the Sentinel

system only counts entities that fall within the bounds of the new geometric representation.

59

However, if we only require modifications to just the basic attributes of the geometric

representation (i.e., color, missing polygons, etc.), then we can accomplish this easily and

without modifying the contained-in function.

The last important aspect of the FLSPlayer Class is the ability of the class to place

the Sentinel players in such a way in the Performer rendering tree that the Sentinel system

renders them last and in reverse sorted order based on distance from the current view point.

The reason for this is to ensure that each transparent Sentinel player volume can see all

other objects, including other Sentinel players. Performer handles transparencies in a

manner so that whatever renders last can see everything rendered before it. Therefore, at

every frame the Sentinel system removes the Sentinel players from the Performer tree, sorts

them in reverse order according to distance from the current view point, and then reinserts

them back into the Performer tree. Also, as mentioned earlier, the Sentinel system must

render this "branch" of the Performer tree last after all other transparent objects in the tree.

The FLSPlayer Class along with the FL_Sentinel Class make up the class

structure used by the Sentinel system. It is through these classes that the Sentinel system

uses the structured programming units and maintains the encapsulation of their existence.

3.5 Conclusions

The overall design of the Sentinel system takes into account both the object-oriented

class structure methodology and structured programming techniques. It mixes these two

approaches in such a way as to come up with a design that is both easy to attach to a

driving application and user friendly. The mix is such that the programmer, using the

Sentinel class structures for a particular application, never need know that the design is not

pure object-oriented. All the programmer need ever know is where to place the method

calls within their code to activate and use the Sentinel system.

The next chapter deals with the actual implementation of the Sentinel system applied

to the SBB. The chapter addresses the data structures used and the system integration with

60

the SBB as well as other supporting frameworks and tools. The chapter also discusses the

use of stand alone utilities designed especially for the Sentinel system, as well as, Sentinel

system operation.

61

IV-. S•STEM IMPLRMENTATION

4.1 Introduction

"This chapter looks at the implementation of the Sentinel system within a large scale

synthetic environment. This large scale synthetic environment goes by the name of the

Synthetic BattleBridge (SBB). The SBB uses the Sentinel as an extension to enhance

situational awareness. This chapter looks at some of the implementation issues involved in

adding the Sentinel system to the SBB.

Five sections make up the rest of this chapter dealing with implementation. Section

4.2 examines the implementation decisions associated with the various data structures of

the Sentinel system. Section 4.3 addresses the issue of integration of the Sentinel system

with other major frameworks, applications, and toolkits that comprise the Sentinel and

SBB system. Section 4.4 discusses some Sentinel system utilities created for the

configuration of the Sentinel system environment. Section 4.5 describes the operation of

the Sentinel system within the framework of the SBB. Finally, section 4.6 presents some

conclusions about the overall implementation process.

4.2 Data Structures and Implementation Decisions

The following subsections look at the various data structures used in the Sentinel

system. Some of these data structures are global and available to the entire Sentinel

system. The following subsections point out where the Sentinel system initializes and uses

these global data structures. The subsections also talk about some of the implementation

decisions associated with the data structures themselves.

4.2.1 Configuration Unit

The computation unit handles most of the initialization of the global data structures

needed by the Sentinel system. The main global data structure used by nearly every

62

structured programming unit and class of the Sentinel system, called currentconfig, carries

current information about the state of the Sentinel system. This state information includes

the current number of active Sentinel watchspaces, the positions of those watchspaces, the

maximum values associated with each of the fuzzy logic categories needed by the

computation unit, and a current list of players located within the Sentinel watchspaces.

Another global data structure, called objiweighLtarray, holds the current entity

weight information for each of the predefined DIS entity types and designations required by

the Sentinel system. A header file, created by a Sentinel system utility, enumerates the

predefined DIS entity types according to a configuration file supplied by the user. The

configuration file, called Object Types.dat, contains a list of all the DIS entity types

required and the category they belong in as designated by the user for the current simulation

run. This enumerated list supplies various array structures with easy access to their array

elements for processing.

Figure 4.1 shows how the user can modify these entity weights using the "Fuzzy

Category Configuration" control panel. The user activates this control panel by pressing

the "Config Sentinel" button on the screen. Subsection 42.3 explains the implementation

and use of this icon button. With this control panel, the user can choose from three main

categories of entities or objects. Each main category divides into six sub-categories. As

shown in F-igure 4.1, the lit buttons indicate where the user made changes to the entity or

object weights. These buttons stay lit until the user saves this information using the "Save"

or "Save & Hide" buttons. The "Cancel & Hide" button returns without saving any

changes. The user also has the ability to load in a predefined object weight file by pressing

the "Load" button. The user can also make all the objects have the same level of

importance by pressing the "Reset 1.0 Weights" button. Finally, the user can see, but not

change, the current DIS protocol representation that the Sentinel system currently uses (flat

or round earth).

63

It
0

.......................

642

Figure 4.2: Category Weight Browser and Editor

65

When the user selects one of the sub-category buttons, the user sees a display as

shown in Figure 4.2. The user can change weight settings for a particular entity or object

here. Figure 42 shows that the user is about to changed the weight of the F_16_USA

designation (entity) from 1.00 to 0.42 The user selected this entity from a sub category

called "Combat Aircraft Friendly" that also is a sub category of "Air Objects".

Another implementation issue associated with the configuration unit deals with

converting positional information into a flat earth or round earth representation. A flag in

the configuration file called default-areas.dat indicates whether the data converts to flat

earth (DISFE) or round earth (DISRE) representation. Conversion to flat earth requires

a local origin at position 0,0,0 with a lat-long position. The Sentinel system then

interpolates the new x-y-z position from this local origin to the lat-long center of the

Sentinel watchspace. The system can also use an absolute x-y-z position for the Sentinel

watchspace from a configuration file called xyzFE defaultareas.dat. This allows for the

direct input of x-y-z position information as opposed to lat-long position information. In

this case, the system ignores interpolation and uses the x-y-z position as absolute position

relative to the local origin. Conversion to round earth requires that the system converts lat-

long information to round earth x-y-z position data via the World Geodetic System 1984

(wgs84) database. Currently the system can use both flat and round earth methods.

However, implementation with the SBB requires that Sentinel watchspaces conform to the

x-y-z flat earth representation. This happens because the SBB converts all incoming round

earth position information into flat earth position information. Therefore, since the SBB

contains the Sentinel system, the Sentinel system must communicate only x-y-z flat earth

position information.

4.2.2 Input Unit

The main function of the input unit is to collect and process information about the

types and numbers of player entities within each Sentinel watchspace. To do this the input

66

unit uses a number of global data structures. The input unit uses two global data structures

initialized by the configuration unit, one global data structure intended for use in the

computation unit, and one internal data structure used by the unit itself.

The input unit takes information about each Sentinel's position and size from the

Sentinel's state global data structure initialized by the configuration unit (currenLconfig).

As the system sorts each entity within each Sentinel watchspace bound, the system loads a

count array for each different type of entity found within the Sentinel watchspace. Once the

system totals this information for each Sentinel watchspace, the system processes the count

arrays based on the required information needed by the fuzzy logic computation unit. The

system then stores this processed information in a global data structure

(Incoming_FLSData). The input unit then passes this global data structure to the

computation unit.

For the current implementation of the Sentinel, the fuzzy logic computation unit

requires a percentage of how many entities of a certain entity group are there within in each

Sentinel watchspace. Currently the fuzzy logic computation unit requires 18 different entity

group percentages, as well as, the watchspace size in square miles for each Sentinel

watchspace. Subsection 4.2.5 talks more about the implementation of the fuzzy logic

computation unit.

4.2.3 Control Unit

The main purpose of the control unit is to manage the various user interface control

panels and to translate user input from those panels to a visual representation within the

scene.

The implementation of the Sentinel system's user interface hinges on the number of

control panels displayed to the user based on the current state of the Sentinel system.

Currently the Sentinel system can manage five levels of user interface control panels. Each

of these levels allows the user a different level of control over the Sentinel system. We

67

identify these five control levels as follows: Icon level, Low Detail level, High Detail level,

Attached Control level, and Functional Control level. The following paragraphs address

each of these levels.

The Icon level gives the user the most basic control over the Sentinel system. The

Sentinel system presents the user with two icon buttons, currently displayed in the lower

left hand corner of the screen. However, the programmer can choose to place these buttons

anywhere on the screen by using a method call from the FLSentinel Class. Each button

represents one of two main user interface control panel paths. The button with the file and

hand icon on it with the "Config Sentinel" text, opens up the main user interface control

panel for configuring entity weight values as described in subsection 4.2.1 (see Figure 4.1

above). The other button with the eye and magnifying glass icon on it with the "Sentinel"

text, opens up the Low Detail level associated with actual control and viewing of Sentinel

watchspaces. Figure 4.3 shows these icon buttons in the lower left hand corner of the

screen. Figure 4.3 also shows some Sentinel watchspaces in the current screen view.

Note that Figure 43 shows approximately 1/2 the actual screen width and height.

The Low Detail level gives the user some added visual information about each

Sentinel watchspace along with some limited functionally and viewing capabilities. The

user can see the watchspace assessment bar associated with each Sentinel watchspace and

its indicated value. Subsection 42.4 describes how the Sentinel system determines these

colors and associated bar lengths for each Sentinel watchspace. The Low Detail level also

gives the user the ability to attach or detach from any given Sentinel watchspace. The

paragraph on High Detail level addresses how attachment or detachment occurs. Note this

Low Detail level uses watchspace slot numbers for the names of the Sentinel watchspaces.

By doing this, we can keep the control panel small for casual viewing. However, the user

must make the connection between the slot number and the actual Sentinel watchspace

name. The buttons on the bottom of the control panel give the user access to either a higher

68

or lower level of control from this point. The button labeled "Hide" reverts to the Icon

level of control while the button labeled "More" gives the user access to High Detail level

control panel. Figure 4.4 shows the Low Detail level control panel in the lower left hand

comer of the screen. Figure 4.4 also shows some Sentinel watchspaces in the current

screen view. Note Figure 4.4 shows approximately 1/2 the actual screen width and height.

The High Detail level gives the user more visual information and functionally than

does the Low Detail level. The user sees a bigger control panel along with two visual

pieces of information not available with the Low Detail level. First, the user now sees the

first nine characters of the Sentinel watchspace's name. Therefore, if the user chooses the

Sentinel watchspace's name carefully, the user can make a quick connection between the

name presented in the slot and where the Sentinel watchspace resides. The second added

piece of visual information shows the user at a glance what the current interrupt level is for

each watchspace. The watchspace assessment status bar now shows the actual interrupt

level text associated with each Sentinel watchspace. Figure 4.5 shows the High Detail level

control Panel. Once again, note that Figure 45 shows approximately 1/2 the actual screen

width and height.

A new functional button at the bottom of the control panel allows the user to add

new Sentinel watchspaces to the simulation provided the availability of a Sentinel

watchspace slot. When the user presses the "Add" button, the Sentinel system presents the

user with a Functional level control panel. This control panel instructs the user on how to

add a new Sentinel watchspace to the simulation. Other functionals associated with the

High Detail level allows the user once again to access other levels of control. The "Hide"

buttion performs the same function as described in the Low Detail level. However, the

"Prev" button allows the user to go back to the Low Detail level control. The other

functionally allowed at this level is the ability to attach or detach from any Sentinel

watchspace.

69

Figure 4.3: Icon Level Control Panel.

Figure 4A: Low Detail Level Control Panel.

70

mml

ArFu A 4hse:•suien ts

to an AI pol•t L--

Attach to aytine wa a

locatled r:h"

by tihe :'••"" I".•2

Figure 4.5: High Detail Level Control Panel.

To attach to any Sentinel watchspace, all the user has to do is to push the

appropriately named Sentinel watchspace button. When this happens, the detach button

light goes out and the pushed Sentinel watchspace button goes on. Attachment to a

Sentinel watchspace causes the view to switch from the current view to the view for that

Sentinel watchspace as described in subsection 3.3.3. There are currently three scales of

attach viewing for Sentinel watchspaces (125, 5.0, and 10.0). The scale used depends on

the function being performed. A standard attachment uses a 125 scale

(STANDARDALTLSCALE) of the actual height needed to fit all the Sentinel watchspace

base just onto the screen. Once the user pushes an attachment button, the Sentinel system

goes to the Attached Control level as described next.

71

The Attached Control level (see Figure 4.6) gives the user the ability to manipulate

the Sentinel watchspaces directly. Once attached to a Sentinel watchspace, the Sentinel

System presents the user with six buttons that can manipulate the Sentinel watchspace or

can view and correlate Sentinel watchspace information. The button's names are as

follows: Move, Modify Radius, Capability Contour, Show History, Reset View, and

Delete. The buttons themselves set flags and/or Sentinel watchspace index numbers in the

FLSentinel Class shared memory structure. On the basis of these flags and/or index

numbers, the FLSentinel and FLSPlayer Classes react accordingly. Subsections 4.2.6

and 4.2.7 discusses this shared memory structure and how it applies to the Sentinel

watchspaces based on user input. With the exception of the six functional buttons

mentioned above, everything else is almost the same as the High Detail level control panel.

The only other difference is that now the "Detach" button indicates not only detaching from

the current Sentinel watchspace, but also allows the user to go back to the High Detail level

control panel.

Figure 4.6 shows the Attached Control level control Panel. Figure 4.6 indicates

that the user attached to a Sentinel watchspace named "Airport." We can tell this by the lit

attached button next to the name "Airport." This control panel is similar to the High Detail

level control panel, with the exception that now the control panel has a row of six

functional buttons to the left of the attachment buttons. Also, Figure 4.6 shows the user

located in the center of the attached Sentinel watchspace. The unshaded circle area is the

base of the Sentinel watchspace and the shaded part indicates looking out through the

transparent inside of the Sentinel watchspace volume (a cylinder in this case). Also, note

that now Figure 4.6 shows nearly all the height of the screen and about 5/6 of the width of

the screen. This is why the control panel appears smaller then in Figure 4.5 above.

72

| ,. 1-.,4.

Figure 4.6: Attached Control Level Control Panel.

The last user interface control panel level, Functional Control, gives the user

instructions and control over the more complex functions allowed by other user interface

control panels. Currently there are five Sentinel functions handled by different Functional

Control levels. The functional areas are as follows: Fuzzy Category Configuration

(Weight Values), Show Watchspace History, Modify Watchspace Radius, Add

Watchspace, and Move Watchspace. s3ubsection 42.1 talks about the Fuzzy Category

Configuration (Weight Values) control panel (see Figure 4.1 in subsection 42.1).

The Show Watchspace History control panel (see Figure 4.7) presents the user with

a strip chart of past watchspace assessments for that particular Sentinel watchspace. The

use of a circular queue (array type) stores the watchspace assessments for each Sentinel

watchspace. Each item in the queue holds a watchspace assessment value, a corresponding

red, green, blue triple, and a color map index. Subsection 4.2.4 on the Output Unit

73

discusses how the Sentinel system derives the red, green, blue triple and the need for a

color map index. Currently the Sentinel system can store and show 50 time slices in one

chart. As new information arrives, old information moves to the left and the new piece of

information gets inserted at the far right of the strip chart. Figure 4.7 shows an example of

a full watchspace assessment history over time. Note that the "Return" button in the upper

right hand corner of the control panel allows the user to remove the strip chart from the

screen.

The Modify Watchspace Radius function has one control panel associated with it

(see Figure 4.8). This control panel gives the user current information on the radius for the

particular Sentinel watchspace of interest. The user can then "apply" changes to the radius

and see the effect of the change in the simulation. The user then has the option to "ok" the

change or "reset" the radius back to what the radius came in as. When the user invokes this

function, the Sentinel system resets the view position and sets the viewing mode to plan

mode. Also, since it would be hard to see the change of radius from within the Sentinel

watchspace of interest (remember, attachment puts the user into the watchspace and high

enough to see the full base of the watchspace on the screen), the Sentinel system temporary

places the user at the mid altitude scale (MIDALT_-SCALE) of 5.0 times the normal

attachment height above the scene. In this way, the user can see the effect of the radius

change on the surrounding area. Once the user completes the radius change (if any), the

view returns to the standard attachment view for the Sentinel watchspace with the radius

changes (if any) incorporated. Figure 4.8 shows the Modify Radius control panel. Notice

the highlighted Sentinel watchspace to the left of the control panel. This visually shows the

user what Sentinel watchspace the radius change effects.

74

Figure 4.7. Sentinel Watchspace Assessment History Strip Chart

Figure 4.8: Modify Radius Control Panel

75

The Move Watchspace and Add Watchspace functions (see Figures 4.9 - 4.13)

behave in much the same way. The difference is that the Move Watchspace function works

with an already defined Sentinel watchspace, while the Add Watchspace function creates a

temporary Sentinel watchspace to move and place in the simulation. Both functions cause

the Sentinel system to reset the view position (for Add Watchspace, the view position is the

center of the terrain) and set the viewing mode to plan mode. Just like the Modify

Watchspace Radius function, the Sentinel system temporary changes the view height so

that the user can better see the placement of the Sentinel watchspace. The Sentinel system

uses the high altitude scale (HIGHALTSCALE) of 10.0 times the normal attachment

height above the scene. For both functions, the Sentinel system presents the user with a

pre and during control panel. The pre control panel gives the user instructions on how to

place or move a watchspace in the scene. When the user moves to where the Sentinel

watchspace position is to be and presses "ready" two things then happen.

First, the control panel changes to the during phase that has new instructions and

different control buttons. Second, the Sentinel system changes the cursor to a transparent

disc that is the same size of the Sentinel watchspace base being moved or a default size if

adding a new Sentinel watchspace. The disc also has a cross hair on it along with the x and

y position relative to the scene. Subsection 42.6 discusses how the FLSentinel Class

implements this disc cursor. Once the user determines the new position for the

watchspace, the user can "position again", "undo", "reset", or "accept" the Sentinel

watchspace placement. When the user completes the move, the view transfers to this new

location with the standard attachment view. One additional thing happens when the user

adds a new Sentinel watchspace to the simulation. After the user accepts the placement of

the new Sentinel watchspace, the user must give this new Sentinel watchspace a name.

The user can do this by using the keyboard or using the virtual keyboard displayed on the

screen. The virtual keyboard allows the user to enter characters into an input area with the

76

mouse, that when ready, transfers to the input area for the Sentinel watchspace's name.

The virtual keyboard can type both lower and upper case letters as well as numbers. The

Clear button clears the input window and the Enter button transfers the given input. There

is also a backspace button (blue solid triangle pointing left) that removes one character at a

time. Once the user gives the new Sentinel watchspace a name, the Sentinel system reflects

this new watchspace and name into the appropriate data structures and control panels.

The following figures show the Move Watchspace and Add Watchspace control

panels. Figure 4.9 and Figure 4.10 show the pre- and during- control panels for the Move

Watchspace function respectively. Figure 4.11 and Figure 4.12 show the pre- and during-

control panels for the Add Watchspace function resp~ectively. Notice how the transparent

disc in Figure 4.12 is smaller then the transparent disc in Figure 4.10. However, the

radii of both discs are the same size. This is because when we are adding a Sentinel

watchspace to the simulation, we are twice as high as we would be if we were just moving

an existing Sentinel watchspace. Therefore, the projection of the circular area from the

view point to the ground of the higher view point appears smaller on the ground. The final

figure in this subsection, Figure 4.13, shows the virtual keyboard and the Change

Watchspace Name control panel associated with adding a new Sentinel watchspace.

4.2.4 Output Unit

As mentioned in subsection 3.3.4 on the design of the output unit, the

implementation of the output unit breaks up into four functional pieces or areas. The

grouping of these functional areas are as follows: initialization and forms display control,

display of Sentinel watchspace information, interrupt control, and virtual keyboard control.

Clearly some of these functional areas are both output and control areas. However, the

following paragraphs on the individual functional areas address the design and

implementation decisions on grouping them in the output unit.

77

Figure 4.9: Move Sentinel Watcbspace Pre Control Panel

Figure 4.10: Move Sentinel Watchspace During Control Panel

78

Figure 4.11: Add Sentinel Watchspace Pre Control Panel

Figure 4.12: Add Sentinel Watchspace During Control Panel

79

Figure 4.13: Virtual Keyboard and Change Watchspace Name Control Panel

80

The first function area of implementation of the output unit deals with initialization

and forms display control. Initialization means setting up all the correct initialization

information needed for the display of all the various user interface control panels associated

with the Sentinel system. The Sentinel system does this by using the global data structures

initialized by the configuration unit. In particular, the Sentinel system uses the number of

Sentinel watchspaces and Sentinel watchspace names to setup the watchspace assessment

control panels. The second part of initialization deals with setting up and displaying the

user interface control panels. The construction and display of the control panels use the

Forms 2.1 Library (see subsection 4.3.1). Therefore, there are a number of initialization

steps needed to set up and display the control panels. Each control panel represents a

"form" that contains a number of "form objects" that make up the form. We must initialize

each of these form objects before the application can use them. The Sentinel system does

this by one procedure call, OutpuLFormConstructor, that builds all the control panels

specified. Once specified, other procedures set the form objects to certain values for start

up. These form objects also get updated by the Sentinel system during run time.

Interrupt control is the second functional area of the output unit. Interrupt control

resides with the output unit because interrupt control causes the Sentinel system to possibly

change the view that the user sees based on the interrupt level. The current implementation

uses four levels of interrupt (see Table 3.1). Each interrupt level has an associated name

that appears centered on the watchspace assessment status bar for each Sentinel

watchspace. As shown in Table 3.1, the interrupt levels may have associated user control

with them. Table 4.1 shows the current watchspace assessment ranges and interrupt level

names used with the four interrupt levels. Note that currently the Sentinel system uses pre-

programmed interrupt level ranges. However, we could modify this so that the user could

define the interrupt level ranges in a configuration file. The Sentinel system would read in

81

this file at start up and set up the parameters appropriately. Also, it would not be hard to

have the system modify these ranges during run time.

Table 4.1

Sentinel Interrupt Ranges

Low Watchspace High Watchspace

Name Assessment Value Assessment Value Display Actions

None 0.00 < 0.45 None

Standby 0.45 < 0.60 Centered on watchspace status bar

Warning 0.60 < 0.80 Centered on watchspace status bar

Go 0.80 1.00 Centered on watchspace status bar

The third function area of the output unit deals with presenting the watchspace

assessments made by the computation unit to the user in a visual form. By using the

Forms 2.1 Library we can use sliders to represent values relative to one another ([Ove92]).

In other words, if we set the bounds of the sliders to handle values between 0 and 1 then a

longer slider would indicate a value closer to 1 then a shorter slider. If we add to this a

color coding that has a one-to-one mapping between a red, green, and blue triple and a

slider value, then we can present to the user a visual cue. The user can then quickly

compare this visual cue against other similar cues and come up with a comparative rating

between all the cues. Therefore, we present the user with two methods of comparison that

relate to one another. The first one is a comparison between sliders of different lengths

with a longer length relating to a higher watchspace assessment value (risk).

The second one is the mapping of color codes to higher watchspace assessment

value (risk). The Sentinel system does this by mapping the watchspace assessment value

obtained from the computational unit to a red, green, and blue triple that displays a certain

82

color. The current implementation of the color coding goes from low to high value (risk)

as follows: blue, light blue, blue green, green blue, yellow green, green red, orange, light

red, medium red, and red. An association here could be that little or no risk relates to a

blue color, medium risk relates to a green yellow color, and high risk relates to red color.

Figure 4.14 shows a bar that goes from a value of 0.0 at the left to a value of 1.0 at the

right. At any place along the bar, the color at that position represcis the value at that

position. The three graphs above the bar indicated how much of each color component (0 -

255) makes up the color triple at any value from 0.0 to 1.0.

Figure 4.14: Sentinel Watchspace Assessment Status Bar Color Components

83

The last functional area of the output unit controls the display of the virtual

keyboard. It is here that the virtual keyboard displays all the characters in the correct case

depending on whether or not the user pushed the shift button located on the virtual

keyboard. Also, it is here that user input through the virtual keyboard buttons (keys), get

transferred to the output window of the virtual keyboard. Finally, the control of

transferring the input from this window to the input window of the appropriate control

panel occurs within the output unit.

4.2.5 Computation Unit

The computation unit houses the heart of the Sentinel system. It is from here that

all the other units and classes interact directly or indirectly. The black box ties to the

computation unit are simple. There exist two global data structures for which information

passes into the computation unit and passes out of the computation unit. The configurau-C

and input units determine what the computation unit needs from the current state of the

simulation. This information passes into the computation unit. The computation unit then

passes out watchspace assessment information that the output unit then uses to visually

represent each Sentinel watchspace to the user. For design, this black box approach

simplifies the mechanism of the Sentinel system. The implementation of the support

mechanisms just needs knowledge of the particulars of the into and out of global data

structures. The support systems process the needed input data to the computation unit and

then visually process the output data from the computational unit. Therefore, the design

and implementation of the inside of the black box computational unit determines how

realistically the Sentinel system mimics human intelligence gathering in the field. The

following paragraphs discuss these issues and the choice of using fuzzy logic to mimic

human thought processes.

We have completed our initial investigation into the usefulness of the fuzzy logic

control paradigm (see [Kin77], [Kos92], [Lee9O], [Mam74], [Zad73]) to assist a virtual

84

environment user in assessing interesting activity and automatically moving the commander

to an interesting portion of the battlespace at the appropriate time. We chose to use fuzzy

logic because it can recognize. a pattern of activity and mimic human judgments concerning

the significance of the patterns. Because fuzzy logic allows us to assess the relative

importance of an input in relation to other inputs, the system can adaptively react to changes

in an environment. This characteristic effectively duplicates a human's response to

environmental changes. We adapted the fuzzy logic controls paradigm to the problem of

assisting, informing, and automatically positioning a user in a virtual environment by

developing a fuzzy logic assistant, which is at the heart of the Sentinel, to monitor and

assess activity within the battlespace.

We have implemented the first version of the Sentinel. This implementation uses a

simplified model of the battlespace and was designed to determine the usefulness of fuzzy

logic and of our approach to improving situational awareness. The initial implementation is

based upon the process model outlined in Figure 4.15. To enable us to assess interest for

specific areas of the battlespace, we allow the user to interactively place Sentinels

throughout the battlespace, one for each desired watchspace. Each Sentinel operates

identically. The following discussion describes the operation of a single Sentinel.

The Sentinel provides the user with a visual signal indicating the appropriate level

of interest for a watchspace (output unit). The level of interest is a numerical representation

of the information that would be sent to the commander by a tactical operations center based

upon observations by scouts. Each Sentinel checks on the status of its watchspace during

each assessment cycle. At the beginning of each cycle, the Sentinel determines the

numbers and types of vehicles, troops, and other important information within its

watchspace (input unit).

85

Compute fuzzy subset by category

Specification of number of objects Numercal Convert tosentinel 73> in watchspace by input f fuzzy form
watch e category category

ýcategreCalculate
sentinel €

watchspace

Convert to Compute Compute
fuzzy form, weighted weighted

sum, 0 e sum, 0 f

sum 0 Tdifferenuce, D

\. Ifuzzy form'Y fuzzy form,-r

Evaluate rule

Operator

feedback

Figure 4.15: Process Model for Computing Interest Level for a Sentinel's Watchspace.

86

These inputs convert into fuzzy variables, after which we evaluate decision rules to

give an overall assessment of the appropriate level of interest for the watchspace. This

operation of the Sentinel is described later. The result of each assessment is communicated

to the commander using a visual display (output unit). The display allows the commander

to remotely monitor the overall activity within selected watchspaces without moving to an

observation point for the watchspace or trying to assess the activity for the entire

battlespace.

The procedure used by the Sentinel determines the appropriate level of interest, K,

for the Sentinel's portion of the battlespace. The model we used employed general

categories for types of threats within each Sentinel's watchspace of the battlespace. These

categories for both friendly and enemy formations are combat aircraft threat, combat

helicopter threat, infantry threat, armor threat, guided munition threat, and artillery threat.

Let i represent each category. Then T(i) is the term set of i, with each value being a fuzzy

number defined on the universe of discourse. Let 0 be an object in the battlespace. The

Sentinel begins by observing the state of the fuzzy system and finds the number of objects

belonging to each threat category X1 within its volume, Vs.

Xi = (2 Oil (Oi within Vs)) V i (1)

The total number of objects for each category is then assigned a membership function value

for each of the term sets (Big, Medium, Small, and Low). The membership functions,

Vj(xi), within each T(i) are based on subjective evaluations and each fuzzy set is convex

and normal (as in Figure 4.16).

The next step in processing is to determine the linguistic variable of Xi with the

highest membership function value, Xji. Let A, B, C, D be the four fuzzy sets associated

with Xi. Equation (2), the union operation, is applied across all four fuzzy sets to

determine the value of o~xi.

87

tWxi n x (AU(BU(CUD)))(Xi) where I.AUB(Xi) = maxfiLA(xi), tB(Xi)} (2)

The output from this step is then used to compute a numerical estimate for military

presence for enemy and friendly forces, Oe and Of, within the Sentinel's volume. Military

presence is computed by taking a weighted sum of all the Wxi for each force, and falls in

[0, 1].
n (3)

0 (W-- 7(O Pi) where Piis the weighting factor for oix(
i-1

"The total military presence, Ot = Oe + Of, is then assigned a membership function

value for each linguistic variable within T(Ot) and application of the approach in equation

(2) results in the y value for presence. The membership functions for Ot are based on

subjective evaluations and each fuzzy set is convex and normal.

Medium Armour Threat

L 1-
C 0.8-

60
S0.6-

c 0.4E "
0 u- 0.2.

0
0 100 200 300

Number of Objects

Figure 4.16: Fuzzy Set Defining a Medium Threat by Armor.

Two other variables are used to evaluate the level of interest in the Sentinel's

watchspace; the size of each watchspace, +, and whether the enemy forces outnumber the

friendly forces, T. The first step in determining ÷ is computing the projected area, A, of the

88

watchspace being monitored by a Sentinel. The projected area, A, has a term set, T(A),

and the linguistic variable of A with the highest membership function value is found by

applying the approach described in equation (2).

We determine the outnumbers variable, T, by looking at the difference, D, between

enemy and friendly forces within the Sentinel's watchspace. That difference is the input to

the membership function evaluation of T(D), (Yes, No, Equal), with the value oft

determined by applying the approach we presented in equation (2).

The values for T, ý, and y are used as input to the rule set to determine the

appropriate control action. The processing up to this point serves to summarize the

information within a watchspace into larger, conceptually related, information aggregates.

We exploited this aggregation process when we designed the rule set so as to minimize the

computational time required to evaluate the control actions. The rule set design produced

48 rules that are capable of responding to all input conditions. A few example rules are

presented in Table 4.2.

TABLE 4.2

Sample Fuzzy Logic Rules

Rule 1 Ify is BIG and is SMALL and-c is YES then level of interrupt is

GO and color is RED.

Rule 2 If y is MEDIUM and ý is SMALL and - is EQUAL then level of interrupt is

STANDBY and color is BLUE GREEN.

Rule 3 If y is LOW and ý is LARGE andr is NO then level of interrnpt is

NONE and color is BLUE.

The control actions that result from the rule set evaluation process provide the

commander with notification concerning the appropriate level of interest required for a

Sentinel's watchspace. Feedback is provided using two general cueing mechanisms, a

89

sliding scale (see subsection 4.2.4) and a level of interrupt (see subsection 42.4). The

sliding scale gives visual feedback by changing color and length according to the value of

K. In addition, there are four interrupt levels that only engage under specific

circumstances. Subsection 4.2.4 addresses both of these cueing mechanisms and how the

current implementation of the Sentinel system uses them in relation to the SBB.

4.2.6 FLSentinel Class

As mentioned earlier in the design chapter, the FL_Sentinel Class' main role is to

act as a mediator between the driving application and the structured programming units.

The FL_Sentinel Class accomplishes this task by setting up method calls and shared

memory. The method calls act as the main go between for the structured programming

units. The shared memory allows for the transfer of global data structures between

Performer threads. This transfer is mainly along a path from the control unit, through the

FLSentinel Class, and to the FLS_Player Class. The FL_Sentinel Class mainly passes

data around the Sentinel system. However, the FL_Sentinel Class does have two drawing

capabilities associated with its draw thread.

The first of these drawing capabilities was pointed out earlier when we discussed

the implementation of the move watchspace and add watchspace commands. When either

one of the aforementioned commands takes place, the cursor gets replaced by a transparent

disk with red crosshairs and green terrain coordinates. Figure 4.10 and Figure 4.12 show

examples of this transparent disk. The graphics library (GL) procedure blendfunction

along with various other primitive GL calls made the transparent disk possible. The

following paragraphs cover more on the blendfunction and its usefulness within the

Sentinel system.

The other drawing capability that is possible within the FLSentinel Class directly

deals with the conceptual visualization of player information within each Sentinel

watchspace, as depicted in Figures 4.18 - 420. As mentioned in subsection 4.2.3 on the

90

control unit, one of the Sentinel system's functions allows the user to view a conceptual

capability contour as it exists within a Sentinel watchspace. The idea here is to give each

player entity a capability rating based on characteristics like speed, acceleration, armament,

friend or foe, etc.. This capability is then mapped to a particular color and a particular

radius of a slightly transparent disk. These capability disks are then placed upon a neutral

background in the same position as the corresponding player entity in the Sentinel

watchspace. These transparent capability disks then overlap one another on the

background. These transparent disks combine on the background with the use of the GL

call blendfunction. What results are transparent colors that blend together to form rough

contour lines of capability. How these transparent colors blend together are a function of

the parameters given to the blendfunction call.

For our implementation, we use the blendfunction with the following two

parameters: BFDC and BF_ZERO. By doing this we scale each frame buffer color

component by the incoming color component with the blending function:

blendfunction (BFDC, BF._ZERO)

Rdestination = min (255, (Rsource * (Rdestination / 255)))

Gdestination = min (255, (Gsource * (Gdestination / 255)))

Bdestination = min (255, (Bsource * (Bdestination / 255)))

Adestination = min (255, (Asource * (Adestination / 255)))" ([McL91:15-7])

The following paragraphs describe the actual color coding and implementation of

the capability contour for the Sentinel system within the SBB. To begin with, we use only

two attributes when calculating the capability of any player entity: entity type and entity

force type. We use entity type to look up the entities weight factor as provided in the

configuration files. This number is between 0 and 1, and relates the relative capability of

this entity player to all others. We use this weight factor to calculate the radius of the disk

91

for each entity type. A weight factor of one yields us the maximum capability radius

allowed by the Sentinel system. We also use the weight factor to determine the total green

color component of the rgb color for the disk. The green component can vary from 255

down to 55. This green component is then part of a rgb triple where the red and blue

components are predetermined based on entity force type.

If the entity force type is friendly, we use RGBcolor(55, green-component,

200), else we use RGBcolor(200, greencomponent, 55) for foes. By doing this

we have color ranges of yellow to orange red for foes, and color ranges of light blue to

dark blue for friends. The reason we do not put the maximum values for red and blue in

the above procedure calls and only go down to 55 for green is so that when overlap occurs,

the blendfunction has some room to overlap the colors and produce a darker shade of red

for foes and a darker shade of blue for friends. In this way, we can see how conceptually

the darker areas indicate where capabilities overlap and therefore are a greater threat. The

same principle applies when opposing forces overlap. We immediately see darker colors

associated with this overlap that would indicate a clash of forces is eminent. Also, because

the way the blendfunction behaves, the red and blue components cancel each other out to

leave only the green component. In this way, the user can view the capability contour and

instantly see the disposition of forces in the watchspace. Levels of blue indicate friendly

forces, levels of red indicate opposing forces, and levels of green indicate overlap of both

forces.

Figure 4.17 consolidates the above information. Along the top of the graph the

triangular area shows the color and radii associated with the capability of friendly forces.

Along the side of the graph the triangular area shows the color and radii associated with the

capability of unfriendly forces. Together these mix with the use of the blendfunction to

create the square greenish area that represents the amount of overlap between opposing

forces.

92

M law I.ArV~ i

Figure 4.17: Capability Contour Color Mixing Graph

The following three figures show the capability contours of a Sentinel watchspace

within the SBB. There were four different types of player entities involved with the

simulation. Each of these entities had the following weights: F-15 = 0.75, F-16 = 0.45,

M1 Tank = 0.25, and TO Tank = 0.35. As shown in the figures, we can see darker areas

of red or blue where overlap occurs within force types.

We can also see dark shades of green where opposing forces overlap. Also notice

that the disks that are much smaller and of lighter color represent the tanks that are of a

lesser weight value. We can also notice the difference between the F-15s and the F- 16s by

watching how fast the disks move across the area and the disks relative size to one another.

93

Figure 418: Capability Contour Map One

Figure 4.19: Capability Contour Map Two

94

Figure 4.20: Capability Contour Map Three

4.2.7 FLS&Player Class

The FLS_Player Class provides the actual representation, placement, and

manipulation of the Sentinel watchspaces within the simulation. All rendering issues, such

as initialization, size, movement, geometry, and viewing, are taken care of by the

FLS_Player Class. There are two main issues with handling the Sentinel watchspaces

within the simulation: geometric representation and transparency issues.

The first issue on geometric representation deals with what geometric volume best

characterizes a Sentinel watchspace. There is currently a choice between four geometric

volumes that could apply to a Sentinel watchspace: irregular shaped volumes, cube,

hemisphere, and cylinder. I address each of these in turn and discuss their strengths and

weaknesses. F'mally, I talk about why we chose the last one, the cylinder, as the geometric

representation of a Sentinel watchspace.

95

* Irregular shaped volumes: while the use of an irregular shaped volume

would allow the user total freedom on the shape of the Sentinel watchspace, it would be

computationally prohibitive to determine the Sentinel watchspaces that contain specific

entity players. Also we would have to have a different model for each Sentinel watchspace

specifically defined.

• Cube: while the cube is just a simplified version of the irregular shaped

volume, it would be much easier and less expensive to calculate the entities that are in

specific Sentinel watchspaces. However, while the cube is probably the easiest of all the

geometric volumes to do the contained-in calculations, it is not representative of the true

spirit of the Sentinel. The Sentinel, in theory, is suppose to mimic a scout out in the field.

With this in mind, the scout would not see the surrounding area as a cube, but he would

see the surrounding area in a radial fashion. This idea leads to the next two geometric

volumes.

* Hemisphere: the hemisphere seems like the perfect choice for representing a

Sentinel watchspace. However, if high flying aircraft and missiles are important to the

Sentinel, then these objects would not fall within the Sentinel watchspace representations

unless they were big enough to accommodate this. The choice of a hemisphere is a good

one if we could divide the Sentinel watchspaces into different types of Sentinel, i.e. a

ground Sentinel and a air Sentinel. In this case, the hemisphere would be a perfect choice

for a ground Sentinel. However, this current implementation of the Sentinel system does

not make allowances for different types of Sentinels.

• Cylinder: the cylinder is the implementation choice we have made for the

Sentinel. The cylinder can represent the radial viewing of a scout in the field, as well as, be

able to include high flying planes and missiles. Containment calculations can be done

without very much expense, although not as cheaply as a cube would be. Also,

modifications to the cylinder shape allows us to represent a Sentinel watchspace with a cage

96

like volume representation. Figure 4.21 and Figure 4.22 shows both the regular cylinder

representation for Sentinel watchspaces and the cage representation for Sentinel

watchspaces respectively.

The second issue on transparency deals with implementing the Sentinel

watchspaces in such a way so that all other objects and features within the simulation are

viewable inside and through the transparent Sentinel watchspaces. The transparent Sentinel

watchspaces do not have a problem with solid objects inside of their volumes or beyond

their volumes. A problem occurs when we try to view other transparent objects or other

transparent Sentinels through a transparent Sentinel. The z-buffer algorithm for Performer

does not properly handle rendering transparencies in the scene. A simple fix to this

problem is to render the transparent objects last ([Fo190:755]). However, we must also

keep in mind that the Sentinel watchspaces themselves need to be rendered in back-to-front

order from the current view point so that we can view Sentinel watchspaces through other

Sentinel watchspaces.

Figure 4.23 and Figure 4.24 shows the Sentinel watchspaces in fly mode within the

SBB. Notice how the Sentinel watchspaces appear darker when they are viewed through

other Sentinel watchspaces. Also notice that in Figure 4.23 one of the Sentinel

watchspaces appear to be highlighted in red. The FLSPlayer Class does a model switch

everytime the user attaches to a Sentinel watchspace. This model switch shows the

attached Sentinel watchspace as highlighted to indicate to the user which watchspace they

are attached to. Figure 4.24 shows a number of objects located within the scene. These

objects have transparent locators around them so that they can be seen at great distances.

However, since they are rendered before the Sentinel watchspace cylinders are, we can see

them inside and behind the transparent Sentinel watchspaces. Once again, notice how the

transparent objects appear darker when viewed through a transparent Sentinel watchspace

cylinder.

97

Figure 4.21: Sentinel Watchspace Cylinder Represertation.

Figure 4.22: Sentinel Watchspace Cage Representation.

98

Figure 4.23: Transparent Sentinel Watchspaces in Fly Mode

Figure 4.24: Transparent Sentinel Watchspaces With Active Players.

99

Although not shown, the cage representation allows us to use a non-transparent

Sentinel watchspace within the scene. Because the spokes of the cage allow for easy

viewing into and through the Sentinel watchspace, making the cage transparent is not

necessary. However, while the cage representation works well in plan mode, it can be

confusing to the user in fly mode.

4.3 System Integration

This section deals with the integration of the Sentinel system with various other

programming libraries, frameworks, applications, and toolkits. The order of the

subsections indicates the relative importance of each component to the Sentinel system.

4.3.1 Forms 2.1

The main library that the Sentinel system integrates to for user interface is the

Forms 2.1 Library ([Ove92]). This library provides a graphical user interface toolkit for

the Silicon Graphics Workstations. The main purpose of this library is to allow the user to

develop graphical user interfaces that are easy to use and fast to develop ([Ove92: i]).

The main framework for each user control panel of the Sentinel system was created

using a forms design application included with the forms library package. This application

goes by the name of Forms Designer. Forms Designer created all the user interface control

panels associated with the Sentinel system ([Ove92: 33 - 47]).

Integration of the forms library with the Sentinel system requires four parts or

steps. The first is the inclusion of the actual code generated by the Forms Designer within

the units and classes of the Sentinel system. The second is the linking of the actual forms

library into the framework application (SBB). The third is the placement of the forms

library initialization call, fl-inito, into the framework application (SBB). The last is the

placement of a control loop that is responsible for checking all forms for user interaction.

100

The previous chapters on design and implementation discussed the first item. The

second item requires the addition of the forms library to the makefdle for the overall

application. The next subsection on the integration of the Sentinel system with the SBB

addresses the third and forth items.

43.2 Synthetic BattleBridge

The Synthetic BattleBridge (SBB), redesigned by Capt. Kirk Wilson, is the driving

application that the current version of the Sentinel system integrates with ([Wil93]). The

SBB takes care of assimilating all the simulation data and passing it to the Sentinel system

for further processing. The SBB is the driving application, and the starting point for all the

managers, frameworks, and other support tools needed by the SBB and Sentinel System.

With this in mind, the SBB needs to pass information to the Sentinel system by means of

method calls to the FLSentinel Class. The FLSentinel Class also derives its draw thread

from the stealth draw thread located within the SBB framework.

The integration of the Sentinel system into the SBB consists of two parts. The first

part is just the inclusion of the structured programming library units and the Sentinel

system classes into the compiling and linking of the driving application. The second part

deals with the placement of Sentinel system class method calls within the framework of the

SBB application source code. The following paragraphs discuss these method calls at a

very basic level. The programmer's manual in Appendix II talks about the exact use of

these calls, and parameters needed by these methods.

The first part of the integration of the Sentinel system into the SBB requires that the

driving application's makefile be modified to include the needed Sentinel libraries and

classes. There are currently four libraries that need inclusion in the compilation of the

driving application: libfls_comp-os*.a, libflssconfigos*.a, libfls countssharedcos*.a,

and libfls-outputsos*.a. The "*" in the library names indicate whether you want to

compile on the Silicon Grapbics operating system version 4.0.x or version 5.x. Just

replace the "*" with the appropriate number (4 or 5). The structured programming units

these aforementioned libraries hold are the computational unit, the configuration unit, the

input unit, and the output unit and control unit respectively. Note that the

libfls_outputs,.os*.a library contains both the output unit and control unit. There are

currently two Sentinel system source code files that contain the Sentinel system classes that

must also be included in the compilation of the driving application: FLSentinelmgr.cc

and FLS-player.cc. The classes contained in the aforementioned source code files are the

FLSentinel Class and the FLSPlayer Class respectively. Note that the appropriate header

files for the classes must also be included.

The second part of the integration deals with the placement of Sentinel system

method calls within the source code of the SBB. There are two SBB source code files that

must be modified to integrate the Sentinel system: stealth.cc and sbb-app.cc.

In stealth.cc there are only two things that need to be done to integrate the Sentinel

system. The first is to include the Sentinel class header files and create the appropriate

Sentinel system variables needed. The second is to place the FLSentinel Class method

call, drawo, into the draw thread of the stealth player class. In this way, the FLSentinel

Class can now use the draw thread of Performer through ObjectSim, to place things on the

sc••en.

In sbh app.cc there are nine steps that need to be done to fully integrate the Sentinel

system into the SBB.

As in stealth.cc, the rirst step is to include and declare the appropriate header files

and Sentinel system variables.

The second step is to add a command line argument so that the Sentinel only comes

up with the SBB when the user gives the corresponding command line argument. For the

current application, a command line argumn1t of -z invokes the Sentinel system upon

startup.

102

The third step to do is to initialize the FLS_Player Class shared memory structure.

This is done in the SBB main by using the FLSPlayer Class method called initsharedO.

The fourth step is to setup and initialize Sentinel system shared memory variables

that control the overall geometric representation of the Sentinel players (cylinders). This

allows the user to hide or change all of the geometric representation of the Sentinel player.

This is done in SBB_App::initializeO.

The fifth step to be done is to assign space to and initialize the Sentinel players

(cylinders). This is done by using two Sentinel system method calls in a row: config0

from the FLSentinel Class and assign-space andjinitializeFLS-players0 from the

FLSPlayers Class.

The next four steps required to integrate the Sentinel system into the SBB are placed

in procedure calls that use the ObjectSim framework: SBBApp::init-sim,

SBB-App::init-drawjthread, SBB.App::pre draw, and SBBApp::propagate.

In the SBBApp::initsim we orient the Sentinel player's initial view in the

simulation. This is done with the FLSPlayer Class method call init_simYFLS-playerso.

In the SBBApp::initdraw_thread we initialize the Sentinel system with the current

entity state of the simulation from the Object Manger (described in subsection 43.4). Also,

we start up the user interface control panels via the forms library. This is done by two

method calls: init0 and start_forms(both from the FL_Sentinel Class. Lastly, we place

the initialization call for the forms library (fljnito) here before we use the start_formsO

method mentioned above.

In the SBBApp::predraw we place the method that updates the Sentinel system

with the current entity state of the simulation. This is done with the FL_Sentinel Class

method updateo. We also check to see if we need to reset the cursor back to normal mode

with the FL_Sentinel Class method resetdefaultcursor0. It is done here because

redrawing the cursor has to be done on the draw thread. Also, we set up the use of the Fl1

103

key with the Sentinel system to control representation of the Sentinel players. As

mentioned earlier, the user can toggle the Sentinel players on or off, or change their

geometric representation if setup to do so. Lastly, we place the forms library call,

fLcheck_forms0, in the SBB device queue loop so that the Sentinel system can monitor

interactions with the user control panels developed with forms 2.1.

Finally, in the SBBApp::propagate we use a method call that takes in all

information on the current state of the Sentinel players and makes the appropriate changes

as needed to reflect these changes in the scene. This is done with the FLSPlayer Class

method propagateFLS-playerso.

As noted earlier, the method calls shown do not indicate input or output parameters.

The programmers manual in Appendix II gives the exact use of these method calls.

433 ObjectSim and Performer

The rendering process used by the driving application (SBB) is a application

framework created by Capt. Mark Snyder. This framework, known as ObjectSim, is the

go between for the driving application and the graphics library, known as Performer, for

the Iris and Onyx workstations ([Sny93]). Currently, the Sentinel system can work with

Performer 1.2.

While the driving application (SBB) takes advantage of most of the capabilities of

the ObjectSim application framework, the Sentinel system uses two aspects of ObjectSim to

render the Sentinel players on the screen. The first use of ObjectSim allows the Sentinel

system to setup and use the draw and application threads. The Sentinel system can then

use these threads to render Sentinel players in the scene. The second use of the ObjectSim

application framework by the Sentinel system takes advantage of the Performer rendering

tree setup by ObjectSim. By placing the Sentinel players in the correct spot in the

Performer rendering tree, ObjectSim can guarantee that the Sentinel players render last.

104

This is obviously very important based on earlier discussions dealing with transparent

object rendering in the scene.

Figure 425 shows the Performer rendering tree associated with the ObjectSim

application framework for the SBB. The figure also shows the location of the Sentinel

players in the tree. Since Performer traverses the rendering tree in a depth-first order, the

tree traversal is from top to bottom and left to right ([Mcl92: 5-1 - 5-21). Therefore, as

shown in Figure 4.25, this causes the Sentinel players to be rendered last.

To use both ObjectSim and Performer 12 we need to include their appropriate

libraries and header files while compiling and linking the driving application (SBB). The

programmers manual in Appendix I1 gives the particulars on how this is done.

4.3.4 Object Manager

The Object Manager, a continuing research effort by Mr. Steven Sheasby, is the

interface between the network and the driving application (SBB) ([She92]). The Object

Manager interprets the DIS 2.0 protocols coming over the network and sets up the

appropriate data structures in shared memory on the current entity state of the simulation.

Once again, the driving application (SBB) sets up and uses most of the capability of the

Object Manager. However, the Sentinel system needs to do two things in order to integrate

the Object Manager with the Sentinel system.

The first thing needed by the Sentinel system from the Object Manager is the

instantiation of the Object Manager from the driving application (SBB). The Sentinel

system needs this so that it can pull information off of the shared memory structures

dealing with the current entity state of the simulation.

The second thing needed by the Sentinel system from the Object Manager is a

listing of all the needed entity types and designations from the DIS 2.0 protocol.

105

pT•ru pGo p: D•

Fig 4ntity Players pCfroup:
SSentinels etne

4.3.5 ModllManage

0106

plroup pt• rup

S •pfGroup p(Group

Figure 4.25: ObjectSim Created Performer Rendering Tree.

The Sentinel system uses this information to set up array structures that can keep track of

entity types and designations for each Sentinel watchspace. Subsection 4.4.2 on the DIS

Entity Manager utility explains how the Sentinel system acquires and sets up the entity type

and designation information from the Object Manager enumerated type f'iles.

4.3.5 Model Manager

The Model Manager was created by Capt. Kirk Wilson. It is a utility used to help

manage all the different models and terrain files needed by any driving application

([Wil93]). Thbe Sentinel system uses the Model Manager instantiated by the SBB to

manage the different geometric representations that a Sentinel player can use. By doing

this, all the Sentinel system needs to do to add a new geometric representation for a

106

Sentinel player is to add a new index number associated with the new geometric

representation to the appropriate Model Manage data file. The user manual in Appendix I,

and the programmers manual in Appendix l1 gives the particulars on how this is done.

43.6 Sound Generation Facility

The Sound Generation Facility, created by Capt. Chuck Wright and Capt. Brian B.

Soltz, allows any driving application to add sound to the application. The SGF is a simple,

maintainable monaural and stereo sound generator for any Virtual Reality System (VRS).

The platform for the VRS is a Silicon Graphics Iris or Onyx Workstation and the platform

for the SGF is an Apple@ MacintoshTm Ici or Quadra 800. The two systems are directly

connected via an RS-232 serial port. Requests for sounds are issued by the VRS via the

Mac Sounds Class, and the SGF responds by playing the requested sound. Since there is

no network traffic or communications overhead, sound requests are played in near real time

([So1921).

The Sentinel system currently uses the SGF to play messages about possible

interrupt conditions occurring within a Sentinel watchspace. These sound messages are

another cueing mechanism used by the Sentinel system to help with situational awareness

assistance for the user.

4.4 System Utilities

While the design of the Sentinel system gives the user a drop in type module that

extends the driving application without the use of any other tools, two Sentinel system

utility tools were also created to help manage, create, and modify some of the configuration

files needed by the Sentinel system. The following subsections briefly address the purpose

and use of these two utility tools. The first utility helps with the initial placement of

Sentinel watchspaces and entity weights, while the second utility manages the needed entity

types and designations required by the Sentinel system.

107

4.4.1 Sentinel Watchspace Configurer

The Sentinel Watchspace Configurer (see Figure 4.26) allows the user to create and

modify watchspace definition and entity weight files without having to run the driving

application that supports the Sentinel system. In this way, the user can create new or

different default files to match different simulations or scenarios. Then, before running the

driving application, all the user needs to do is change the name of the file they want loaded

at run time to the file name for the default that is loaded at runtime. Note that this is only

necessary with the default areas file and not the default entity weight file. This is because

the user can load in other entity weight files during the running of the programming by

invoking the "Config Sentinel" icon button. However, there currently does not exist a

facility to allow the user to load watchspace definitions on the fly.

To use the Sentinel Watchspace Configurer, launch the program named

configFLS_SA. Then press the "load" button to load in files to work from or start from

scratch. The entity weight editor works exactly the same as the "Config Sentinel" facility

found with the Sentinel system. To enter Sentinel watchspace definition information,

follow the instructions provided on the screen next to the watchspace definition input area.

Figure 4.26 shows the startup screen for the Sentinel Watchspace Configurer.

4.4.2 DIS Entity Manager

The DIS Entity Manager allows the user to specify what entity type and

designations the Sentinel system should keep track of. It does this by converting a user

configuration file of entity types and designations into a header file which defines index

numbers for each entity type or designation. We then compile with this new header file so

that the Sentinel system can use these index numbers to keep track of the entity types and

designations. A default entity weight file is also created based on the entity types

configuration file with each of the entity types given a default weight of 1.0.

108

I-A

0)

109

The only restriction is that the entity type configuration file can only have names of

entity types and designations that match completely with the enumeration names given in

the Object Manager source code. The entity type configuration file should also have a name

of ObjecLTypes.dat. From this file, two files are created with the names

FL.LObjecLTypes.h and defaultobj weights.dat. Theses files contain the defines and

entity weight information respectively.

4.5 System Operations

Upon startup with the -z command line argument, the Sentinel system reads in all

configuration information and initializes the user control panels and fuzzy logic

computation unit. All Sentinel watchspaces are initialized and placed in the simulation.

Once all the initialization is completed, the Icon level control panels appear on the screen.

Note that the Sentinel system performs two operations over and over again until the driver

application is shutdown.

The first operation causes the Sentinel system, at periodic intervals, to retrieve

current entity state information about the simulation. This information is then processed

with the fuzzy logic computation unit. The results are then fed back to the output unit and

displayed to the user on the screen.

The second operation is more of a control panel navigational task. As mentioned in

subsection 42.3 on the implementation of the control unit, there are a number of user

control panels put up on the screen depending upon what the user is currently trying to do.

The Sentinel system keeps track of the user state based upon the control panels that are

open, as well as, the control panel buttons that the user pressed. Figure 4.27 shows a

navigation through all the control panels and their buttons.

110

Sentinel Config
Sentinel

............
....
... ...

.........
............. ategorySave & Cancel WeightHide & Hide

......Browser
..

.... Fuzzy ... ave
Category Ret

Configuration
Low

Detail Browser

...
Modify
Radius

ese Panel
......

X*.. pp y

....
MDetail
Radius

d Pre
p Attach Move Move

Control atchspacel
Add
hspace y

Pre
A dd

Undo Kesett

.....
..... During

MoveAssessment
History

INO Change
Chan Watchs ace

Name

........... 0
During Level Legend

UULI AddVirtual Icon
Keyboard n Low Detail

ly High Detail
Attach Control FORROOMMM
Functional....

Figure 4.27: User Control Panel Navigation

ill

4.6 Conclusions

The implementation of the Sentinel system with the SBB incorporates a drop in

module approach. The idea being that with minimal changes to the source code of the

driving application, the programmer can extend the driving application to include the

Sentinel system. The implementation with the SBB was very successful from, this point of

view. There was minimal source code changes need in the SBB and the class and library

structure made it easy to compile and link in the Sentinel system with the SBB application.

The next chapter discusses some results and recommendations for this thesis project

and future research respectively.

112

V. RS.uILTS AND RrCOPMMRNDATIONS

5.1 Introduction

This chapter addresses the results of implementing the Sentinel system with a

synthetic virtual environment in a large scale battlespace. For this particular

implementation, we used the Synthetic BattleBridge (SBB) to represent the large scale

synthetic virtual environment. The rest of this chapter presents with some observations

about the use and integration of the Sentinel system along with problems encountered

during the effort, as well as, possible future research and development in this area.

5.2 Observations

The Sentinel system, as tested with the SBB, is a capable situational awareness

tool. However, due to the restricted ability to test the Sentinel system against great

numbers of different entity types participating in a simulation, true results on how the

Sentinel system behaves is limited. In other words, unless the Sentinel system is stressed

at its maximum numbers, we can not determine if the watchspace assessments produced

match closely to what we would expect given the same information presented to a

battlefield commander. Numbers in the range of 50 to 500 for each fuzzy logic category

are required to assess the Sentinel system's correctness. However, this would mean that

the driving application would have to support 900 to 9000 objects in the simulation, as

well as, the Sentinel system processing that same number of objects for possibly each

Sentinel watchspace. Also, it would not be enough to just broadcast 900 to 9000 objects

randomly. To get meaningful test results, these objects would have to be involved in

specific scenarios to trigger the rules we want to test in the rule base for the fuzzy logic

computation unit.

113

5.3 Problems Experienced

There were two main problem areas encountered with the design and

implementation of the Sentinel system with the SBB. The first of these areas was how to

design and create a user interface that was easy to use. The second problem area deals with

the overhead of the Sentinel system on the graphic pipeline that results in a lower frame

rate.

The first area was a trade off between ease of use for decreased frame rate, and

faster development time for a less complicated design and implementation. In other words,

the first trade off gives us user friendliness but at a slower frame rate, while the second

trade off allowed for fast development in a less complicated way. The forms library was

chosen with the above trade offs in mind.

The forms library is a programming shell that allows a programmer to make less

complicated graphic calls to produce very complex graphic objects. However, since the

forms library is just a shell over the GL calls of the Silicon Graphics Workstation, there is

overhead involved which leads to a slower frame rate in some instances. This slower

frame rate depends on many factors. How often we write to the forms, where the forms

are located in reference to the rest of the rendered scene, and how much user interaction is

needed for each form are just some of the more important factors associated with the

change in frame rate.

However, what the forms library costs us in speed, it more then makes up for in

easy of use and faster development time. The control panels created with forms are very

pleasing to look at and simple to use. However, where the forms library really comes

through is in the design and implementation of the control panels themselves. With the use

of the Forms Designer application that comes with the forms library package, development

time was approximately one quarter of the time it would have taken to develop the control

114

panels using straight GL calls. Also, changing an existing forms control panel can be done

in a matter minutes using the Forms Designer application.

5.4 Future Research and Development

Based on this current implementation, we have concluded that the fuzzy logic

paradigm has the potential to provide the type of situational awareness assistance needed in

a virtual battlespace environment. However, several aspects of the implementation need

improvement. First, the network of nodes and variables used in our initial implementation

must be expanded, along with the inferences required to reach subgoals within the semantic

network. This will require a better characterization of the php of a battle and of different

battlespace situations. For example, a given situation early in the battle may have a

different level of threat than the same situation later on in the battle. We must also develop

a better characterization of the interrelationships and differences between air and land

combat. It will also be necessary to expand the relative fire power ratings, i.e. rank order,

of each model of weapon used in the simulation and to match these entities to the groups to

which they belong. This assignment and matching process will be based on the given

information provided by Army FM 100-2-1, 100-2-2, and 100-2-3, and on interviews

with commanders.

Because the virtual battlespace environment is growing in complexity from the

current 100 objects to over 8000 total objects, we will have to implement a capability to

resolve operattr feedback conflicts between Sentinels. This may be accomplished through

the use of fuzzy modifiers to give us additional levels of commander notification. Another

change is being forced upon us by the growth in complexity of the simulated battlespace.

Currently, the Sentinels only analyze volumes and situations that correspond to the volume

of concern for a battalion commander. Since the battlespace's volume is growing and

becoming more complex, the Sentinel's capabilities must be expanded to support

evaluations for commanders of larger combat formations.

115

In initial user studies, it was determined that the technique used to compute)xi

sometimes conflicts with commander's intuition about the situation in a Sentinel's

watchspace. The Sentinel currently under development will compute woi in a manner that

more closely resembles that of a tactical operations center.

Analysis has also indicated that the Sentinel should separate the computation of

level of interest for ground forces from that for air forces. In other words, create a Ground

Sentinel and a Air Sentinel. Also, the ability for Sentinel watchspaces to create themselves

based on a certain set of rules or priorities would mean that the commander would not have

to be perfect in the initial placement of the Sentinel watchspaces. Instead, as a watchspace

triggers, the commander would be informed of the new watchspace and its placement.

Further work must also be done in determining the most effective components of the rules

as they relate to current military doctrine. For example, the types of objects and their

relative firepower ratings must be as accurate as possible so that they reflect the military

training philosophy inherent in the training of commanders, and so that the user studies can

be effectively performed. Follow-on work will involve the recognition of troop/vehicle

formations and the speed of these formations, the incorporation of elapsed time, orientation

of weapons systems, and obstacles.

Supporting workstations need to be added to the standard configuration of the

Synthetic BattleBridge. They will make the commander's situation within the virtual

environment more like the environment the commander experiences in the real world. The

supporting workstations will be used to provide entry points for staff members into the

commander's station so that the staff can provide information and analysis to the

commander without forcing him to leave the virtual environment.

One further area of future interest is the human factors of the display, particularly

regarding the range and types of colors to be used, the design of the sliding scale, and the

effects on the user of both the sliding scale and the level of interrupt.

116

5.5 Conclusion

The Sentinel system is a proof of concept for a graphical and computational tool that

gives the user assistance in making decisions based on situational awareness information in

the given virtual environment. The Sentinel system provides the user with a user friendly

interface for easier operations and analysis of that current situational information in the

simulation. The Sentinel system uses the powerful fuzzy logic set theory concept to closely
mimic human decision making behavior. This fuzzy logic set theory concept allows the

Sentinel system to combine and abstract many factors concerning the simulation and the

chosen Sentinel watchspaces. The user then sees the results of this combination and

abstraction as a relative color and bar length presented on the screen. As long as the user is

able to determine the meanings associated with the color and bar length, the user can

quickly determine the activity level in each Sentinel watchspace as compared to other

Sentinel watchspaces. Therefore, through the use of the Sentinel the user can drastically

cut down on the time needed to analyze and assess large amounts of information within the

simulation. Analysis is now presented to them in a timely and efficient manner concerning

watchspaces of interest which may not even be visible to the user in the current view of the

simulation. This greatly enhances the situational awareness capabilities of any user.

117

APPENDIX I: USERS MANUAL

1. Overview

This user manual is provided to give a fast and easy tutorial on how to use the

Sentinel system within the Synthetic BattleBridge (SBB). Section 2 discuses how to use

the modifiable configuration files to setup initial conditions for the Sentinel system.

Section 3 discusses how to actually run the Sentinel system within the SBB from startup to

shutdown.

2. User Modiflable Configuration Files

The following subsections talks about how to modify the various configuration files

in order to setup an initial state for the Sentinel system.

2.1 ObjecLTypes.dat

The ObjecLtTypes.dat file contains a list of all the DIS entity types required and the

category they belong in as designated by the user for the current simulation run. This

enumerated list supplies various array structures with easy access to their array elements for

processing. If new entity types need to be added to the simulation, all that needs to be done

is to put the entity type name in the correct category as found in the ObjecLtTypes.dat file.

However, this new entity type name must match exactly the enumeration name given to it in

the Object Manager. Also, the Objectypes.dat file is used to build two other files for use

in the Sentinel system: FLSObjecLtTypes h and default_objyweights.dat. Theses files

contain the entity type defines and entity weight information respectively.

2.2 defaulLareas.dat

This file contains the initial locations of the Sentinel players within the simulation.

It also contains information on what DIS representation is to be used: round (DISRE) or

flat earth (DISFE). It also tells the system how many Sentinel watchspaces are to be setup

118

initially. Lastly, it tells the system the upper bound on the Fuzzy Logic Categories to be

used when processing entity count information. The layout of the file is as follows:

DIS_FE or DISRE, 16 floating point numbers indicating the Fuzzy Logic Categories'

upper bounds, the number of initial Sentinel watchspaces, the lat-long position for each

Sentinel watchspace along with a radius in miles and a name for the watchspace (8

characters maximum with no spaces). Example file that sets up four watchspaces in flat

earth mode with varying Fuzzy Logic Category upper bounds:

DISFE
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
4
30 21 23 N 60 12 09 E 1 Watchspl
10 21 23 S 30 12 09 W I Watchsp2
15 21 23 N 45 12 09 E I Watchsp3
22 21 23 S 15 12 09 W 1 Watchsp4

2.3 xyz_FEdefaulLareasxdat

The system can also use an absolute x-y-z position for the Sentinel watchspace

from a configuration file called xyzFE-default_areas.dat. This allows for the direct input

of x-y-z position information as opposed to lat-long position information gotten from the

default_areas.dat file. In this case, the system ignores interpolation and uses the x-y-z

position as absolute position relative to the local origin. The format for this file is as

follows: number of initial watchspaces, then for each watchspace give the x, y, z, radius in

meters, and name of the watchspace. Example file that sets up four watchspaces:

4
5974.59 7175.41 -400.0 1609.3 Island

17516.64 6995.31 -400.0 1609.3 Town
17334.56 12173.65 -400.0 1609.3 Airport
20813.45 14423.78 -400.0 1609.3 Ranch

3. Running With the SBB

3.1 Startup

To startup the Sentinel with the SBB, all that needs to be done is to use the -z

command line argument when starting up the SBB application.

119

3.2 Control Panel Navigation

The use of the Sentinel system is very straight forward. The Sentinel's user

interface consists of a number of user control panels. The Sentinel system keep track of

where the user is in relation to these control panels by the current state of the Sentinel

system and what user input buttons are pressed. The following subsections present a quick

journey through all the control panels and their functions. Each control panel is shown

here for easy reference while reading. The starting point is the Icon Level of control panels

shown in the lower left hand comer of the screen (see Figure 1.1).

Figure MI: Startup Icon Control Buttons

120

3.2.1 Config Sentinel

By pressing the Config Sentinel button shown in Figure 1. 1, the user is presented

with a control panel that allows them to make changes to the entity weight for each type or

designation of player in the simulation (see Figure 1.2). The control panel itself is

partitioned up into three functional areas: entity weight editing, DIS protocol viewing, and

control.

Figure L2: Fuzzy Category Configuration Control Panel

When a user presses one of the 18 sub-object buttons, they are presented with a

entity weight browser that allows them to go in and make changes to the entity weights for

any type object in that particular category (see Figure 1.3). When changes are made to the

entity weights, the button for that category remains lit until it is saved or canceled (see

Figure 1.2).

The control area allows the user a number of options when using this control panel.

While the DIS protocol area shows the user what DIS representation they have in the

current simulation. This is for viewing purposes only, and the DIS representation cannot

121

be changed here. Currently, you must start SBB over again with changes made to the

default.areas.dat file as mentioned in section 2.2 of this Appendix.

Figure 1.3: Entity Weight Browser Control Panel.

3.2.2 Sentinel

The main control path for the Sentinel system comes from pressing the Sentinel

button as shown in the lower left hand comer of Figure 1.1. By pressing this button, the

user is presented with greater and greater levels of control over the Sentinel system. The

first level of control presented to the user when they press the Sentinel button is called the

Low Detail level control panel.

122

3.2.2.1 Low Detai Level Control Panel

The Low Detail level control panel is merely a small viewer for watchspace

assessments. It is presented to the user in the lower left hand comer of the screen, and

provides minimal information about each currently active Sentinel watchspace (see Figure

1.4). The only functionally allow to the user at this point is to attach or detach from a

Sentinel player or to use the Hide and More buttons to go back to the Icon level or up to the

High Detail level respectively. This control panel is really a go between from seeing no

information on the Sentinel watchspaces to being able to control all aspects of the Sentinel

watchspaces.

Figure 1.4: Low Detail Level Control Panel.

123

3.2.2.2 High Detail Level Control Panel

The user gets to the High Detail level control panel by pressing the More button

located on the Low Detail level control panel (see Figure 1.4). It is at this control panel that

the user can now begin to interact with the Sentinel players in the simulation. This control

panel is not that much different from the Low Detail level cotitrol panel. The main

difference is that now when you attach to a Sentinel watchspace at this level, other

functions become available to the user. Also, at this level the user has the ability to add

new Sentinel watchspaces to the simulation with the Add button (see Figure 1.5). This

level also gives the user more detailed information about the Sentinel watchspaces. The

following subsections talk about adding and attaching to Sentinel watchspaces respectively.

Figure LS: High Detail Level Control Panel.

124

3.2.2.2.1 Add Watchspace Control Panels

When the user presses the Add button on the High Detail level control panel, the

user is prompted through four types of control panels in order to place a new Sentinel

watchspace in the simulation.

First the user is shown a pre-add control panel which instructs the user on how to

proceed (see Figure 1.6). When the user is ready to continue, the next control panel is

presented, the during-add control panel (see Figure 1.7). Lastly, when the user has

successfully added a new Sentinel watchspace to the simulation, two more control panels

are presented to the user: name change control panel and the virtual keyboard control

panel. Both of these control panels allow the user to assign a name to the new Sentinel

watchspace that was just added.

Figure 1.6: Pre-Add Control Panel.

125

Figure 1.7: During-Add Control Panel.

The virtual keyboard allows the user to enter characters into an input area with the

mouse, that when ready, transfers to the input area for the Sentinel watchspace's name.

The virtual keyboard can type both lower and upper case letters as well as numbers. The

Clear button clears the input window and the Enter button transfers the given input. There

is also a backspace button (blue solid triangle pointing left) that removes one character at a

time. (See Figure 1.8).

3.2.2.2.2 Attachment Control Panel

When a user is at the High Detail level control panel and attaches to a Sentinel

watchspace, the High Detail level control panel adds a row of buttons that give the user

more functional control over the Sentinel players. Currently there are six added functions

that the user can now perform at this control level. The user can move a watchspace,

modify a watchspace's radius, display a entity capability contour for the entities currently

within that watchspace, display a assessment history for that watchspace, reset to the initial

126

view for that watchspace, and delete that watchspace (see Figure 1.9). The following

subsections talk about each of the above mentioned functions that contain a control panel:

move and modify radius. The rest of the functions are self explanatory.

Figure 1.8: Name Change and Virtual Keyboard Control Panels.

127

Figure 1.9: Attached Control Level Control Panel.

3.2.2.2.2.1 Move Watchspace

The Move Watchspace and Add Watchspace functions (see Figures 1.6 and 1.7)

behave in much the same way. The difference is that the Move Watchspace function works

with an already defined Sentinel watchspace, while the Add Watchspace function creates a

temporary Sentinel watchspace to move and place in the simulation. With this in mind, the

move watchspace function also has a pre-move and a during-move control panel associated

with the function. These are very similar to the ones used for the add watchspace function.

The only difference is that with the move watchspace function, the user is not required to

rename the moved Sentinel watchspace. Figures 1.10 and I. 11 show the pre-move and

during-move control panels.

128

Figure 1.10: Pre-Move Control Panel.

Figure LII: During-Move Control Panel.

129

3.2.2.2.2.2 Modify Watckspace Radius

This function allows the user to modify the radius of the selected Sentinel

watchspace through the use of the Modify Radius control panel as shown in Figure 1.12.

Figure L12: Modify Radius Control Panel.

3.3 Shutdown

Since the Sentinel system is an extension of the driving application, in this case the

SBB, all that has to be done to shutdown the system is to quit the driving application.

130

APPENDIX II: PROGRAMMERS MANUAL

1. Overview

This programmers manual tries to give the reader an understanding of how and

where to make programming changes within the Sentinel system. It is by no way all

inclusive, but should give enough information to get started. The manual is broken up into

five sections:

"* Hardware and software requirements,

"* Directory structure,

"* Programming particulars,

"• Integration with the Synthetic BattleBridge (SBB),

"* Compiling and linking.

2. Requirements

2.1 Hardware Requirements

There are currently two such workstation types for which the system can be run on:

"* The Silicon Graphics IRIS 4D/440VGXT Workstation with two or more

processors,

"* The Silicon Graphics Onyx RealityEngine 2 m Workstation with two or more

processors.

"* Macintosh Quadra 800 or IIci for sound interface if required.

131

2.2 Software Requirements

2.2.1 Commercial Software Requirements

• The software was written in C++. It can be compiled with the AT&T C++,

version 2.1 or 3.0.1, compilers.

* The two workstations above can be equipped with either the version 4.0.x

or 5.x Silicon Graphics Operating System.

0 The rendering is done with Performer 2.1.

2.22 Non-Commercial Software Requirements

• The driving application: SBB ([Wi1931)

• The user interface software: Forms 2.1 ([Ove92])

* ObjectSim application framework ([Sny93J)

• Network interface software: Object Manager ([She92])

• Model Manager ([Wi193])

* Sound Generation Facility (SGF) ([So192])

3. Directory Structure

Figure 1.2 shows pictorially the directory structure of the Sentinel system along

with the driving application (SBB). It should be noted that the root location, leo2, may

have changed since the end date of this thesis work. However, the rest of the directory

structure should still be intact from the bsoltz directory on.

Table 11.1 gives the name of each directory shown in Figure 11.1 along with a short

description of its contents.

132

'a..

133

Table U.1 Directory Description

Directory Name Description

leo2 place at root

bsoltz starting place for my work

ThesisStuff starting place for thesis work

Fuzzy_L.ogicSentinel starting place for Fuzzy Logic Sentinel work

bin holds executables for Sentinel utilities

data filesFLS hold data files related to the Sentinel system

dev starting point for the development work

fd files basic specs for the user forms of the Sentinel

model files holds developed model files

geom hold geometry for model files

profile holds profile info for model files

include holds the includes files for all Sentinel source code

lib holds library file created by source code

modelsFLS holds current models used by Sentinel system

src starting point for all source code sub-directories

DISEntity-mgr source code for the DIS Entity enumerator utility

config_unit stand alone source code for the watchspace and weight editor utility

Class FLS source code for the Sentinel Classes

config-unit source code for the configuration unit

inputjunit source code for the input unit

FLS source code for the fuzzy logic computation unit

output-unit source code for the output and control units

134

Table 11.1 Directory Description (cont.)

Directory Name Description

SBB starting point for the Synthetic BattleBridge (SBB)

lib SBB dependent libraries

pfmr starting point for the SBB code

SoundMgr code for the Mac Sounds Class

include holds the includes files for all SBB code

src holds the source files for the SBB

data files SBB hold data files related to the SBB system

models SBB holds current models used by the SBB system

data-filesFLS link to Fuzzy _LogicSentinel/data files FLS directory

models FLS link to FuzzyLotgicSentinel/models FLS directory

models link to usr/people/wb/models that has all the entity models

4. Programming Particulars

4.1 Global Data Structures

structure to hold information on each entity weight

typedef struct objecLweights

{

float weight; //weight associated with this particular entity

char name[40]; //entity name

} objecLweights;

typedef object weights AllObjects Weights[MAXOBJECTTYPES];

135

structure to hold data on players watchspace location in simulation

struct FLS_obj-spec

{

int friend-flag; //friend or foe

pfVec3 xyz; I/position

float obj-weight; I/entity weight

int FLS_area_number; //watchspace number entity is in

structure to hold information on each defined area

struct areaspecs

{

int validflag; I/is the watcbspace currently valid

int lat-deg, latjmin, lat-sec;

char lat-direction; //N, n, S, s

double lat_location_double; //decimal latitude

int londeg, Ion-rmin, lon sec;

char Iondirection; l/E, e, W, w

double Ionjlocation-double; //decimal longitude

float radius miles;

float radiusmeters;

double areasize-miles; //(PIE)(radius)(radius miles)

char areaname[401; //watchspace identifier

double x, y, z; //position

136

const int MAXAREAS = 10; //Current Max number of areas

structure to hold the Current configuration data

struct input-values

{

float infantry-friend, infantrysen,

armor_friend, armor-en,

combat ac friend, combat_ac_en,

combat-heli-friend, combathell en,

aaasamfriend, aaa sam en,

artillery-friend, artillery-en,

smartbombsjriend, smart_bombs&en,

jammersfriend,jammers,.en; //Maximum fuzzy category values

char areas[5]; /lnumber of areas as a charcacter

char areadefmitions[500]; Hall watchspace definitions as a string

int num_areas;

areaespecs areadefs[MAXAREAS]; I/array of MAXAREAS watchspaces

FLS-obj-spec containedjin-array[MAXPLAYERS]//contaminment entities array

int StandAlone; Flag to indicated if the Fuzzy Configuration Form is being

used as a stand alone application in within another application.

int Protocol_Flag; Gives the current protocol being used.

inpuLvalues currentconfig; Holds the global structure of the Sentinel

AllObjectsWeights obj-weightLarray; Holds weight information on the entities.

137

4.2 Global Defines and Constants

Table 11. gives all the defines and constants for the Sentinel system for easy

reference:

Table 11.2 #defines and const

File Found In Kind Name Value

FLSS~config~unit.cc #define AREAS 0

FLSS-SA config unit.cc #define AREAS 0

FLSS-config. unit.cc #define AREA DEFINMTONS 1

FLSSSA configjanit.cc #define AREA DEFINITONS 1

FLSS-confia-unit .cc #define ARMOR.E 9

FLSS_.SA config unit.cc #define ARMOR E 9

FLSS config unit.cc #define ARMOR F 8

FLSS-SA-confir unit.cc #define ARMOR-F 8

FLSS.config~unit.cc #define 15

FLSS .SA config__nit.cc #define ARTHILRY E 15

FLSS-config...unit.cc #define ARTLLJERY -F 14

FLSS SA config~unit.cc #define ARTIJLLERY F 14

StringClass.h #define BLANK______________________

FLSS-confiR-unit.cc #define CAC E 1

FLSSSA config unit.cc #define CAC .E 1

FLSS config unit.cc #define CAC F 0

FLSSSA config...unt.cc #define CACYF 0

FLSS iu des _check.cc #define CASE DEFAULT PRINT FALSE

FLS-memberships_ýomputations .cc #define CHECK-OUTPUT FALSE

FLS-memnbershipcomputations.cc #define CHUNKING COMPUUh DEBUG FALSE

FLS~output~color.cc #define COLO)RJ)EBUG FALSE

FLS chunking~definitions.h #define COMMENT (ca)x3

ELS rule definitions.h #define I__COMMENT________________

fuzzy_1ogic..sentine1.h #define_ ___________________________

FLS..membership computations .cc #define COMPU`TE CATEGORYM1EMBERSHIP DEBUG IFALSE

IFLS-help.cc I#define IGONThOLL.ER12

~138

Table 11.2 #defines and const (cont)

File Found In Kind Name Value

FLS SA help.cc #define CONTROLL.ER 128
FL Sentinel mar.ce #define JDEBUG COUNT jFALSE
FLSS_configjinit.ec I #define DEFAL T-RES-I.I-F "aafiles _FLS/default areas.dat"

FLSS SA_ onfig umt.cc 1#define I1ARAS CN.........at files _________________at

FLSS-config-unit.cc I #define DEFAULT AREAS _CONFIGFLN default-areas.dat"

FLSS-SA. confi u--nit .cc 1#define JDEFAULT AREAS CONFIG N FILEul Nra _________

FLS chunking definitions.h #define DefaultChunkingRules,_File I data files FLS/chunking rules"

fuzzy-logic-sentinel.b #define DefaultMembership..Values..File "data-filesFLS/

I fuzzy-set-membership default"

FS uRtuicc#define IDEFAULT _MILES 11.0

FLSS-config-unit.cc #define DEFAULT_-ONWEIGHTISCONFIGFILE j"data-filesFLS/
FLSS

I default-ob -weights.dat"

FLS...SA-config-pnit.cc #define DEFAULTON_-WEIGHTS.CONFIG_-FILE j"data-filesFLS/
___________________ jdefaul oWweights.dat"

FLSS config unit.cc #define DEFAULT ON WEIGHTSCONFIG FILE NAME "default obi-weights~daj

FLESS SAconfgntc #define DEFAULT_ ON WEIGHTS CNýFIG FILE NAME "default__obWweig htsatJ

FLS output rules~h #define Default Output Rules File " data files FLS/fuzzy set output rules"

FLS rule definitions.h #define IDefault Rules Values File "data files FLS/fuzzy set rules"

FLS SBB-interface.cc #define DELTA-DEBUG IFALSE

wgs84.h const double constE?= 20flattening .fattening* flattening;

wys84.h const double flattening= 11.0/298.257223563

wgs84.h Iconst double majRadius= 16378137.0;
wgs84.h Iconst double minRadius= 6356752.3142;

wgs84.h const I]oulerdiusRatio= I minRadius*minRadius /(maRadius*maiRadius)

fuzzy logic sentinel.h #define ECHO PRINER FALSE

fuzzyjlogic..sentinel.h
#define EIGHT

((char)0x38)
FLS-cbunking..definitions.h #define ENDOFSTRING, ((charY)O')

FLS rule definitions.h a#define ENDOFSTRING 1((char)'\O')

fuzzy loic sentinel. h #define ENDOFS'TRING, ((char)V'V)

139

Table I1II #defines and const (cont)

File Found In Kind Name Value

fuzzyjlogic sentinel.h #define ECE

FLS-chunkuig definitions.h #define Ei. t(char)OxOA)

FLS rule definitionshb #define BOL ((char)OxOA)

fuzzyjlogic sentinel.h #define BX.(chrOxA

FLS-membership computations.cc #define EXTJRA MEMBERSHIP COMPUTRDEBU FAS

FLSS~globals.h #define FALSE 1

FLS_ membershipSomputations.cc #define COMPUTE RMEMBERSHIPRFNCTONDEUIFAS

fuzzy-logic sentinellh #define FALSE 0

StringClass.h #define FALSE 0

wgs84.h #define FILIER '"/lib/cpp%slgprfilter

FLS-membership computations.cc #define FINAL OMUIFUDEBUG FALSE

fuzzy-logic..sentinel.h #define FIVE ((char)0x35)

FSjydf.iconst float MAX RADIUS= 50.0;

____________________ const float TERRAIN HEIGHT= 50000.0;

FLSSjypdefs.1i const float TERRAIN WDHM= 25000 .0;/

FLS-.w.enbertyeigbthjules.cc #define FLOAT..DEBUG FALSE

FLSý SBB interface.cc #define FLOAT JDEBUG FALSE

FLSS-config-jinitxcc #define FLSC CANCEL _HIDE 4

FLSS-config-unitxcc #define FL.SC DSF 0

FLSS-SA-config-unit.cc #define FLSC DIS FE 0

FLSentinelm r.cc #define FLSC-PIS-FE 0

FLSc yfgjnit.cc #define IFLSC DISRE 1
FLSS SAconfigunit.cc#efn

FLCDSR1

FLSS cofgiitAc#cie

LCIL
FLSSA config-unit.cc #define FL.SC HELPE 3

FLSS config~unit.cc #define FLSCQ..LOA 1

FLSS SA config unit.cc #define FLSC- LOA 1

lFLSS configjpimt.cc #define IFLSC-RESET 12

Table H1.2 #defmes and const (cont)

File Found In Kind Name Value

FLSS confir-.unit.cc #define FLSC-SAVE 0

FLSS-conf~itinit.cc #define FLSC SAVE HIE 3

PLSS SA config~unit.cc #define FLSC .SAVE TO FILE 0

FL Sentinelmpnjr.h #define FLSFORMJC 0

FL -Sentinelmpgrlh #define FLSFORM Y 10

FL Sentinel mgr.h #define FLS ICON X 0

FL Sentinelmgr.h #define KS ,ICONY 0

FL-Sentinel-mitr.h #'define FIS-INTERVAL 5

fuzzylo~gic sentinel.cc #define KLS ThTERVAL 5

FLSS output unit.cc #define FLSFLAYER HEGHT 10000.0

FLS-player.cc #define F[SJLAYERHEIGHT 10000.0

fuzzyIogic sentinel.h #define POUR (ca)x4

FLS help.cc #define GENERAL 26

FLS-SA help.cc #define GENERAL 26

fuzzyjlogic sentinel.h #define GLOBALJ)EBUG FALSE

FLSS output unit.cc #define GO--I 0.80

FLSS~config unit.cc #define GUIDEDMAU7NITONS _E 13

FLSS SA config-unit.cc #define GUDE1D MU1LJTIONS E 13

FLSS-config,_pnit.cc #define GUI]DED_.MUNMTONS-F 12

FLSS -SA-config unit.cc #define GUIDE MUNITIONS F 12

FLSS-config-unit.cc #define HELICOPTERS E 3

FLSS .SA config umit.cc #define HELICOP1RS JE 3

FLSS-config-.unit.cc #define HELICOPTERSF 2

FLSS-SA config unit.cc #define HELICOPTES-F 2

FLSS-output unit.cc #define HIGH.ALTSCALE 10.0

wgzs84.h #define INBUFFSIZE 256

FLSS config...unit.cc #define INFANTRY_ 7

FLSSSA configunit.cc #dein NA1 E7

FLSS onfiunitxcc #define INFANTRYF6

141

Table 11.2 #defines and const (cont)

File Found In Kind Name Value

FLSS ,SA-config-unit.cc #define INFANTRY -F 6

FLS help.cc #define INPUT 27

FLS.SA-help.cc #define NpaT 27

FLSS-input unit~h const int MAX .SUBAREAS-- 10;

FLSS .output unit.cc const int MAX HISTORY =51

FLSS-typdefs.h const int MAX-AREAS-- 10;

FLSSjtypdefs.h const intMAX..AREA NAME LENGTH= 10;

FL Sentinel xner.cc cofist hit SCREEN CENTER X =640;

FL_.Sentinel._mgr.cc const int SCREEN CENERY =512;'

FL..Sentinelmtgrxcc const int SCREENJHEGHT =1024;

FL Sentinel mgr.cc const int SCREEN WIDT :=1280;

FLS-.help.cc #define IN1RFACE 30

FLS SA-help.cc #define INTERFACE 30

FLS SBB interface.cc #define IN I RFACE-JDEBUG FALSE

FLSS-output unit.cc #define LABEL-SIE 9

FLSS configumitxc //#define LATMIN 30

FLSS-SA-config-unit.cc //#define LATMIN 30

FLSS.config-unit.cc #define LATORG 33.5 //North

FLSS SA config...nit.cc #define LATORG 33.5 //North

FLS member table.cc #define LOADER DEBUG FALSE

FLSS-config...unit.cc II#de fine LONGaMN 30

FLSS ,SA config.uýnitxcc //#define LONGMIN 30

FLSS config...unit.cc #define LONGORG 39.5 //East

FLSS-SA-config umit.cc #define LONGORG 39.5 //East

fuzzyjlogic sentinel.h #define Maximum CategoryName Length 32

FLS chunkin~g definitions.h #define Maximum ChunkingRule Name LenAB2

FLS..chunking...definitions.h #define Maximum..Number Of Chunking M ershiRules15

FLS~cbunking definitions.h #define Maximum..Numnber -Of -Chunking .Rulej 4

FLS rule definitions.h #define Maximum_.Ruleset Name Length 1 32

142

Table 11I2 #defines and const (cont)

File Found In Kind Name Value

fuzzy-logic sentinellh #define MaxininumTable NameLength 32

FLS-chunking defintitions.h #define Maxuimum -Membership Name Length 32

FLSSjypdefs.h #define MAX PLAYERS 2000

FLS membershipSomputations.cc #define MIEMBERSHIP -COMPUIE-DEBUG FALSE

FLSS- onfig unit.cc #define NMIERS JEW 274000

FLSS_.SA config~unit.cc #define NMEERS EW 274000

FLSS config...unit.cc #define MEIERSNS 115000

FLSS SA config unit.cc #define METERS NS 11000

FLSS confipgunit.cc #define WMERS-PER MIN 1853

FLSS SA config-unit.cc #define hMETERS PER MIN 1853

FLSS-out ut-unit.cc #define NMIALT-SCALE 5.0

FLSS config unit .cc #define AEQAR 5

FLSS SA configjinit.cc #define MISCA E 5

FLSS confia-unit.cc #define MISC..AIRF 4

FLSS SA configujnit.cc #define MISC- AI- 4

FLSS..config~junit.cc #define MISC GROUND E 11

FLSSSA configAnit.cc #define MISC GROUND _E 11

FLSS config unit.cc #define MISC -GROUND -F 10

FLSS _SA config unit.cc #define MIfSC GROUJND F 10

FLSS -confij. unit.cc #define MISC MUNMTON E 17

FLSS SA config unit.cc #define MISCMUNMTON E 17

FLSS confipumnt.cc #define MISC MUNITON -F 16

FLSS SA configjpimt.cc #define MISC MUNiTONF 16

FLS chunkinjgdefinitionslh #define NEWINqE (br\'

FLS__rule diefinitions.h #define NEWLINE (br\)

fuzzy logic sentinellh #define NEWLINE (ca)\'

StringClass.h #define NEWLINE \all ______

fuzzylogic sentinel.h #define NINE ((cbar)0x39)

jFLS..chunkingjefinitions.h #define INULI (arO

143

Table 11.2 #defines and const (cont)

File Found In Kind Name Value

FLS rule definitionslx #define NiL (char)O

fuzzyjloiic sentinel.h #define NIL (char)O

FLSS..globals~h #define NULL 0

fuzzyjlogic~sentinel.h #define Number of Categories 8

FLS output-rulesh #define Number _OfChunkedValues 10

FLS interface structures.h #define Number of Color Cue Levels I11

fuzzy-logic sentinel.h #define Number....LMembershipffables 4

FLS output rules1h #define Number-Of-Output Rules 3

FLS rule definjtions.hi #define NumberOfRulesets I

FLS rule definitions~h #define Number of Rules Number _ofMembership Tables

FLS defines~h #define NumberjO(Subspaces 10

fuzzy-logic..sentinel.h #define Number Of Subspaces 10

fuzzy-jogic sentinel.h #define ON~E j ((char)O3,1

FLS help.cc #define OUfPlTIT 29

FL.SSA help.cc #define OUTFUT 129

FLS interface structures~h #define Out ut Color Defs I data files FLS/ tput~colorý_ues...file*

FLS-output rules.cc #define OIYIPUTRULES DEBUG FALSE

FLS-chunkingjiefinitions.h #define PERIOD ((cliar)Ox2E)

FLS rule definitions~h #2define IPERIOD (q)xE

_LScni~ntc dfn I 3.1415927

FLSS output.-unit_____#definePIE 3.1415927

_LSS-cni ___________#define___PIE 3.1415927

FLS membership~pomputations.cc #define PRESE2NCEL.WEIGHT ((double)2.00)

FLSS configjinit.cc #define PUSHED 1

FLS&SA config~unt.cc #define PUSHED I_______

FLS...help.cc #define PUSHED I

FLS...help.cc #define QU171LHELP 124

1FL&.SSAhelp.cc #define QlUIT HELP 124

144

Table 11.2 #detines and coost (cont)

File Found In Kind Name_________ Value___

FLS-chunking~derinitions.h Ddefine UI (b)x2

FLS rule-definitionsh #define__________ ______________"22

fuzzyjlogic~sentinel.h #define char____x22) _

FLSS~output unit.cc E#deflne RANDM2MON FALSE ___

PipeClass.h #define____________ ____________r_

FLSS config..unit.cc #define___RELEASED___ 0

FLSSSA config-unit.cc #define___________ RELEASED___0

FLS-helv.cc #,define_____RELEASED__ 0

FLS chunkinpajules.cc #define RULES DEBUG FALSE

FLS member weight rules.cc #define RULES DEBUG FALSE

fuzzy-lotic-sentinel.h #define________SEVEN___ ((char)0x37)

fuzzyjlogicjsentinel.h #eie S(((char)0x36)

FLS rule definitions~h #define Size Of Rules Table umhe r ofCategories*2)

FLS-chunkinit definitions.h Idefine SPACE ((char)0x20)

FLS rule definitionsh Ddeflne SPACE ((char)Wx2)

fuzzy logic~sentinel.h #define SPACE ((cha~r)0x20)

FLSS -output -unit.cc #define STANDARD ALT SCALE 1.25

FLSSouztput unit.cc #define STANDBY MEN 0.45

FLS chunkiny-definitions.h #define TAB (ca)'

FLS rule definitions~h #define TAB (ca)'

fuzzyjlogic sentinel.h #define TAB (ca)'

FLS help.cc #define 7ES71NG 31

FLS-SA-help.cc #define TESTNG 31

fuzzyjlogic sentinel.h #define THREE ((char)0x33)

FLSS.globals.h #define TRUE1

FLSS-iu initializer.cc #define TRUE1

fuzzyjlogic sentinellh #define TRUJEI

StringClass.h #define TIRUE1

Ifuzzyjlogic sentinellb #define TWO ((char)0x32)

145

Table 11.2 #defines and const (cont)

File Found In Kind Name Value

.fuzzy-losic-sentinellh #define LNELN ((char)Ox5tQ

FLS3--hunking-rules.cc #define VERIFYCWtNKING RULE.S FALSE

FLS member weight_ru es .co #define VER!FYR ULESCONTENTS FALSE

FLS member table.cc #define VERIFYTABLE CONIENTS FALSE

FLShelp.cc #define VERSION 25

FLS SA help.cc #define VERSION 25

FLSS output unit.cc #define WARNINMN0

FLSS -confi unit.cc #define WEIGHT BRO RETURN 2

FLSSSA config..unit.cc #define WEIGHT.BRORETURN 2

FLSS confi-unit.cc #define WEIGHTBROSAVE 0

FLSSSA_config__unit.cc #define WEIGHTBROSAVE 0

FLSS confiezunit.cc #define WEIGHT BRO SAVERETURN 1

FLS SSAconfijL_unit.cc #define WEIGHT BRO SAVE RETURN 1

FLSS-confi unit .cc define WEIGHT SLCTUR 3

FLSSSA config_.unit.cc #define WEIGHT SELECTOR 3

wgs84.h #define WGS84DATA -data files FLS/wts84.dat"

PipeClass.h #define WRXIEMOIE _w_

FLSS config-unit .cc #define I XYZ FLAT TRUE

FLSS confi unit.cc #define I XYZ FLATCONFIG FILME data-filesFLS/xyz FE default areas.dat"

fuzzy logic-sentinel.h I#define IZERO ((char)x30)

4.3 Structured Programming Unit Procedures

The following subsections have a table for each structured program unit that gives

the names of all the procedures located in that unit. The tables give the name of the file the

procedure can be found in and the name of the procedure and its input and output

parameters. Functional descriptions of the procedures can be found in the code itself.

146

4.3.1 Configuration Unit

Table 113 Configuration Unit Procedures

File Name Procedure Name

FLSS confi Lunit cc void reset weight btnso

FLSS confivjznit.cc void reset control btnsO

FLSS-config-unit-cc void set~jprotocol btno

FLSS config-.unit-cc void load area obLwelgbtdefault-ilesO

FLSS-configunit.cc void load obj~weight fileo

FLSS config-unit.cc void set all-obj weigbts; o one()

FLSS-config-unit.cc void save to weight~flleo

FLSS-config-unit.cc imt lat Ion erro check(int i, area-specs *area defs. int default files)

FLSS-configjznit.cc void convert..xyzYLAT-EARTH(double tat-locationdouble,

________________double lon location double, double *x, double *y, double *z)

FLSS-configunit.cc void setup)CZ ýFLAT area&p

FLSS.config~unit.cc int save_default..yalues~input-values default-values,

_____________AILObjects-Weight terpoweightarray)

FLSS-config-jznit.cc void save-jobi weightsp

FLSS config~unit.cc void FLSCPane eControl cb(FLOBJECr *ob, long item)

FLSS-confir-unit.cc void load weigtht bro(char *group title, int start index, int stop-inex)

FLSS-config-unit .cc void load weight-browsers-b(RO-BJECr *obj, long item)

FLSS configupnit.cc void weight bro control cb(FLOBJECr *oj long item)

FLSS config~uiit.cc void FLSC Protocol cb(FL OBJECT *obj, :ong item)

FLSS-confil-uiit.cc void Toggle Qonfigscb(FLOBJECT *obj, long item)

FLSS confir-unit.cc void Initialize...FLSC Fonnso

FLSS-configLunit.cc void ConfigForm Constructor(o

FLSS-conflgjforms cc void create form..Yuzzy..onfigture Info(void)

FLSS confiLgjorms.cc void create form error browser(void)

FLSS~configjLorms.cc void create form ielpform(void)

FLSS-confivgjorms ce void create form..weight browser(void)

FLSS configorsc void create form ConflgFormjf~idden(void)

FLSS-confir -orms.cc void create-the-config- orms(void)

147

Table 11.3 Configuration Unit Procedures (corn)

File Name Procedure Name

FLS ielp.cc static void loaditAchar str[[901)

FLS help cc void help-ýsb(FL OBJECT *obi, long arg)

FLS-hel .cc void exithel cpb FOBJECT *obJ, Ions arg

FLS help.cc void showbeip cb(FL-OBJECT *obi, long ara)

wgs84.cc void plh2wgs84(double phi, double lambda, double elevation,

_______________double *x. double *y, double *z)

4.3.2 Input Unit

Table IIA Input Unit Procedures

File Name Procedure Name

FLSS input unit.cc int contained in.FE(pfVec3 location, int subspace num)

FLSS-input unit.cc 'it containedin RE(pfVec3 location, int subspace num)

FLSSjnput-unit.cc void count...object(SBB...Net-Player* currentobject, int Obj-jiame,

AIllObjects FLS counLarray,int subsp~aced)

FLSS..jput-unit.cc void process jdata(IncomingFLSData. Temp-Data, All-Objects FLS count armay)

FLSS iu des -check.cc int designationcheck(int designation)

FLSS iu des check.cc hit platform munition check(SBB Net Player* current object)

PLSS Wudes check.cc mnt lifeform check(SBB _Net Player* current~object)

FLSS iu des chek.cc int needf objeqqSB --- ~ ayr -- reno--c

FLSS iu-initializer.cc void initialize Ilncoming FLSData(Incomning.YFLSData TempData)

FLSiu inutializer cc void initialize count _afray(All-ObjectsY-LS count~array)

FLSS iu-initializer.cc Ivoid initialize contained in afayO

148

4.3.3 Computation Unit

Table 11.5 Computation Unit Procedures

File Name Procedure Name

FLS-SBB-interface.ec int retrieve intvalue(FILE *ffleptr)

FLS SBB interface.cc float retrieve float value(FILE *fide-jr)

FLS SBB interface.cc void get subs!E data(Incoming FLS Data Tern Data)

FLS SBB interface.cc void compute subspace deltasp

FLS SBB interface-cc void updateold-subspace-array(o

FLS chunking-rules.cc void find-chunker jiame(int current rule, FILE *File-ptr)

FLS~chunking~rules-cc void getshunker-sategory-names(int current-rule,

FL~ membeI tabetc voidýo~ctgois
FILEmbe ofil cae oistrE*je~

FLS chembejLruales.cc vo id load-oe ory iujiam e(itcretulFILE *file-ptr, a aec~an)

FLS~cjnemb ~r tales.cc voit find cautego ry ajuleso IE fle~

FLS member table.cc voitdfincnumber-olfjablegories(FILE *fi1cjPtr)

FLS-member table .cc Membersind Table Ptry-agpmet (]L table lemo(itrnme ftbl..et

FLS member table.cc vitallodrint finud m number of table entriesFL fiepr

FLS member table.cc vodeneMembership-T able Prge-abemes or(int canum)eotbl nre

FLS memberjtable.cc void trintjoaded abe(int cat-uitnum, FIo *ffle p ntr) e

FLS_ member table.cc void load ýmembership-.Able nms(in atn

FLS member weigt rullesc void find ruleset nameimt ruleset num, FILE * file-ptr)

FLS-member..weigbLrulesxcc void load_membership~jable...weights(int rule-num, mnt cat-num,

__________________________FEE *fileJ-W)

FLS,_member _weight rules.cc void print.loadeOLrules(int ruleset num)

FLS member,_weight rules.cc void load ruleso

FLS--membership-computations.cc float compute membership(float current-input,

______________________ MmbeshiTab-le Etr Ptr n~ext tabl~e, mt array size)

149

Table 11.5 Computation Unit Procedures (cont)

File Name Procedure Name

FLS-memnbership-computations .cc: float computeý_sategoryjnembership(float current-input,

__________________ I_ it current category, int nfle-nmim

FLS membership computations.cc void compute~weighted~membership values(int rule~num)

FLS membership__computationsxcc void chunk weighted mernbership~yalues()

FLS__membership computations.cc void compute final output()

FLS output color.cc void get.output colors()

FLS output rules.cc void output_.ules,_error(int i, int j, int nextjint)

"FL5,_utput rules.cc ivoid load output ruleso

FLS readflles.cc I mt fipd~data(fIL *file-ptr)

4.3.4 Output and Control Unit

Table 11.6 Output and Control Unit Procedures

File Name Procedure Name

FLSS output forms.cc void create _form_7hreatForm(void)

FLSS-output forms.cc void create form TlhretForm Hidden(void)

FLSS output forms.cc void create form Threat Form LowWno(void)

FLSSogutput forms.cc: void create fom T~hreat Hlisto GrypaphForm void)

FLSS output forms.cc void create form ThreatRadius Form void)

FLSSoputput forms.cc: void create form Threat Move -Form void)

FLSS-outPut forms.cc void create form 7aTreat Add Form~void)

FLSS -outut forms.cc void create form ThreatName Changeý_Form(void)

FLSS output forms.cc void crete formVrtaKeordFmvod

FLSS output forms.cc void create...output-forms(void)

FLSS-.output-unit.cc mnt get next-slot availableg

FLSS~output unit.cc: void initialize threat historieso

FLSS output unit.cc void clear _amejistory array(long item)

FLSS output unit.cc wt iinsert threat history(struct item the~item, int area number)

FLSS output unit.cc void initialize-radius form I

150

Table 11.6 Output and Control Unit Procedures (cont)

File Name Procedure Name

FLSS output unit.cc void re!Seattachbuttonso //set all buttons released

FLSS output unit.cc void attchto a~rea cb(FLOBJECT *obj, long item)

FLSS output unit.cc void display threat history

FLSS output unit.cc void show not used slot(long item)

FLSS..output-unit .cc void show-slot(lonit item, char *temp~strig)

FLSS output unit.cc static void load instructions(char str[8][401, FLOBJECT *obj)

FLSS output unit.cc, void initialize vk()

FLSS-output-unit.cc void initialize name change form(int area-index, int keyboard flag)

FLSS output unit.cc void load upp caseo

FLSS-output unit.cc void load lower casep

FLSS output unit.cc void vk cb(FLOBJECT *obj, long item)

FLSS output unit.cc void attach control cb(FLOBJECT *oj long item)

FLSS output unit.cc void radius control cb(FLPBJECT *obj, long item)

FLSS-output-unitxcc void reset default cursoro

FLSS output unit.cc void move area control cb(FLOBJECT *oIjj, long item)

FLSS output unit.cc void detach _from area cb(FLOBJECT *obi, long item)

FLSS -outPut~unit.cc void add-areacb(FLO0kilECT *oi long item)

FLSS output _unit.cc void name ~change area control cb(FL OBJECT *ob4j, long item)

FLSS output .unit.cc void add area control cb(FLOBJECT *Wb, long item)

FLSS-output-unit.cc void return btnscb(FL OBJECT *blom~g item)

FLSS outputunit.cc void mnakpejconsb(FLOBJECT *blong item)

FLSS output unit.cc void more info cb(FLOBJECT *obj, long item)

FLSS-outpu~unit.cc void cv info cb FLOBJECT *obW, long item)

FLSS _output unit.cc: void togglethreat cb FLOBJECT *obj, Iong item)

FLSS _.output unit.cc void initialize-formn(int num)

FLSS-output-unit.cc char *calculate interrupt level(float risk)

FLSS~outpu!.unit.cc void calculate,_color(float risk, int *red, mnt *green, int *blue)

FLSS output unit.cc int check area attach btn(int i)

FLSS-outppu unit.cc: void update,_FLS area values(OutgoingFLS-Data outgoing data)

FLSS~output~unit.cc void Output Form Constructor()

151

4.4 Object-Oriented Class Methods

The following subsections have a table for each Object-Oriented Class that gives the

names of all the methods located in that unit. The tables give the name of the file the

method can be found in and the name of the method and its input and output parameters.

Functional descriptions of the methods can be found in the code itself.

4.4.1 FLSPlayer Class

Table II.7 FLSPlayer Class Methods

File Name Method Name

FLS_player.cc FLSPlayer:: FLSPlayer()

FLS player.cc FLSPlayer :: FLS Player (float sc-x, float sc y, float sc z)

FLSplayer.cc void FLSPlayer:: init index (int id)

FLS_player.cc void FLSPlayer:: set index(int id

FLplayer.cc int FLSPlayer :: getview index(int val

FLS player.cc void FLSlayer :: setposition (float new x, float new v, float new z

FLS_player.cc void FLS.Player :: set_scale (float scx, float scy, float sc.z)

FLS-player.cc void FLSPlayer:: set delta (float d x, float d y, float d-z)

FLS_player.cc void FLSPlayer:: init shared(

FLS_player.cc void FLS_Player:: init()

FLSplayer.cc void FLSPlayer:: init(pfGroup* FLS._cyl_group

FLS player.cc void FLS_Player :: propagate(int on off)

FLS_player.cc void FLSPlayer :: sortids(int *FLS cyl ids, FLS-Player *FLSCyl, Stealth *Ov,

tnt attached index)

FLS-player.cc void FLSPlayer:: init simFLS&players (Color_View MainViewobj, FL_Sentinel FuzzySen,

FLS Player *FLS Cyl , Stealth *Ov, int max stealth views, Simple Terrain* Ter)

FLSplayer.cc void FLS _Player :: propagate__FLS-players(FL-Sentinel FuzzySen, FLSPlaycr *FLSCyl,

Stealth *Ov, Simple Terrain* Ter, int attached index, int switchjocators, int on off)

FLS-player.cc void FLSPlayer :: assign-space and initializeFLS-playcrs (FLSentinel FuzzySen,

FLS Player *FLS Cyl, Pfmr Renderer* Rend, SimEntityMgr* Sir, ModeLManager* Mod)

152

4.4.2 FL_Sentinel Class

Table H1.8 FLSentinel Class Methods

File Name Method Name

FLSentinel mgr.cc void FL,_Sentinel :: draw()

FL Sentinel mgr.cc void FL Sentinel::capability o!!(int area numn , mnt val)

FL Sentinel mgr.cc input..yalues FL-Sentinel::get area efsQ

FLSentinel mgr.cc void FLSentinel::update..area..efs(input..alues current- areas)

FL-Sentinel mgr.cc int FL_ Sentinel::count objects(IncorniingFLS Data Tern Data)

FLSentinel~mgr.cc void FL,_Sentinel::config() //must be done in the application thread

FL Sentinel~mgr.cc void FL Sentinel::area deleted(int area num)

FL Sentinel-mgr.cc void FL Sentinel::area radius changed(int area numn)

FL Sentinel mgr.cc void FL.Sentinel :: changevyiew(mnt area~num,- float scale altitude)

FL Sentinel~mgr.cc void FL Sentinel::mnove areajready(int area numn)

FL Sentinel m ~r.cc void FL.-Sentinel :: set_ýmovin _attached mnt moving_attach)

FLSentineLmngr.cc__voidFLSentinel::add area-ready(int areajiumn)

FLSentinel~mgr.cc void FL,_Sentinel::add area here(int area~numn)

FL Sentinel mg~r.cc void FL Sentinel::set highlight(int area num, mnt val)

FLSentinel-mgr.cc void FL.Sentinel::init(SRBB.Net-Manager* Net, long iconx, long icony,

______________lon formx, Iong formy

FL Sentinel mgr.cc void FL Sentinel::start forms(long *FLSwindow, long *FLSCwindow)

FLSentinel mgr.cc void FLSentinel::set-icon-position(Iong iconx, long icony)

FLSentinel mgr.cc void FL-Sentinel::set form-position(long formx, long foriny)

FL Sentinel mgr cc void FL Sentinel :: set attached(int prior attach, mnt current attach)

FL Sentinel mgr~cc [void FL-Sentinel::updateo

5. Integration With the Synthetic BattleBridge

To integrate the Sentinel system into the SBB, two source code files of the SBB

have to be modified. The following code shows the places in the files that have to be

changed. These files are located in ~-bsoltzffesisStuff/SBB/pf~mr/src.

153

stealth .cc

#include "drawstring.h" H/ for string output

finclude "btonh Ifor button output

finclude "stealth.h"

#include "FLSentinel-mgr~h"

extern it includeFLS;
extern FLSentinel FuzzySen;

extern "C"

#include "formshb"

#include "sbb-forms.hl

void Stealth ::drawo

set~screen(0.0, SCREENHEIGHT, SCREENWIDTH, 0.0,

SCREENCENTERX, SCREEN-CENTERY, SCALEýYACIOR);

Sh->altitude = Coords->xyz[PF..Z];

Sh->beading = Coords->hpr[PFH];

if (Sh->current-net-list-index != -1)

Sh->altitude -= Sh->base~offst[PFY];

Sh->heading += Sh->basejyot[PF-H];

154

if (includeFLS)

FuzzySen.drawo;

set-screen(0.0, SCREENHEIGHT, SCREENWIDTH, 0.0,

SCREEN_-CENTER-X, SCREENCENTER-Y,

SCALEFACTOR);

set-xform-natrix(SCREEN-CENTER X, SCREEN-CENTER.Y, Sh->heading)

sbb-app.cc

#include "drawstring.h"

#include "button.h"

#include "soundsh"

#include "FLS-player.h"

extern "C"

{ nld "omh

#include "sbforms J"

typedef struct

155

int mouse-x;

int mouse4y;

int mouse..pressed;

long FLSformswindowjid; //for both SBB & FLS

long FLSCforms_window-id; II & FLSC ie configure forms
int fuzzscyLdisplay; //Toggle for FLS solid cylinders

int alt_keypushed; //Toggle for alt key

int switchfuzz-cyl-display; //Toggle for FLS cage cylinders

} Shared;

static Shared* Sh;

II /IIllIIIIIIIIIIIIIIIIIIIIIIIIIII/IIIIII/IIIIIIIIIIIIIHIIIIIIII/IIIIIII/IIIIIIIII

//forms globals

int includeNay = FALSE;

I/// FLS 21 Nov 93

int includeFLS = FALSE;

II IIIIIIIIIIIIII/III/111111/I1111111111111

I forms globals

int NTSC_Mode = FALSE;

II IIIIIII/IIIIIIIIIIIIII/IIII/IIIIIIIIIIIIIIIIIIII/III/IIHIIIIIIIIIHIIIIII/IIIIII

//The sounds player

static MacSounds* SBB_DrawSound;

156

FLS--layer FLSjCy1[MAXAREAS];

FL_Sentinel FuzzySen;

extern void reset-defaultscursoro; //from output unit

Ilsbb_ýbutton call..back function prototype (to sbb_.button)

extern void LocButtonPressed(int val),

extern void LocButtonPressedNet(int val)

void SBB-App::inmtializeo

Sh->sounds-enable = TRUE;

Sh->sound-chan = 1;

Sh->fuzz - yLdisplay = TRUE;

Sh->switch-fuzzcyl-display = FALSE;

II Tis function is called from the renderer obj after Performer

iis ready for models to be added

void SBB.App::imit-sim()

MainViewobj.new-view(O);

157

if (include_FLS)

FLS~yl[Ol init simFLS-players(MainViewobj, FuzzySen,

FLS~yI , Ov, MAXSTEALTHVIEWS, &terrain);

IINow, initialize the array of stealth players/views

for (i=O0; i<MAXSTEALTHVIEWS i.+)

Ov~i] .inito;

if threejd-render)

Off .initQ;

if (MainViewobj.Delta != NULL)

MainViewobj.Delta->inito;

SBB-App..Sound = new Mac...Soundso;

void SBB.App ::initdraw..theado

fi-inito;

flupnqdevice(INPUTCHANGE);

if(include...Nav)

create-tbe-sbbjobrmsO;

initialize_the_sbb_formsO;

fi-set_forniposition(NavFormlidden, -1, 0)

Sh->forrns-window-id = fi_show_form(NavFormHidden,

FL-PLACE-POSMON, FALSE. NULL);

158

if (includeFLS)

FuzzySen !nit(&NetMan) //DIS

FuzzySen.startjforms(&Sh->FLS_forms -window_id,

&Sh->FLSC_formsý_window id);

tLqdevice(PADVIRGULEKEY); IIcycle backward through stealth views

fLqdevice(PADAS7ERKEY); Hi cycle forward through stealth views

fl.qdevice(NUMLOCKKEY); II enable default stealth view

void SBB&App :: pre-drawo

FL_-OBJECT *obj;

if (includeFLS)

FuzzySen.updateO;

if (FuzzySen.Sh->reset default~cursor-flag =TRUE)

reset-default-cursoro~; I/back to the arrow

obj = fi~check-formsO;

while (obj != NULL && mine)

if (obj=FLEVENT)

short value;

159

log but = fLqread(&value):

if (value) switch (but)

{

/111Toggle for FLS cylinders FLS 21 Nov 93

case F1 IKEY: // Set index to default view.

if ((getbutton(LEFTALTKEY) - TRUE) 1I

(getbutton(LEFTALTKEY) - TRUE))
{

Sh->switchfuzzscyl-display = TRUE;

}//end if alt key pushed
else if ((getbutton(LEFTCTRLKEY) = TRUE) II

(getbutton(LEFTCTRLKEY) =- TRUE))
{

if (includeFLS)

{// pull the FLSC forms window to the top

winset(Sh->FLSC formswindowid);

winpopo;

H/pull the FLS forms window to the top

winset(Sh->FLSformswindow id);

winpopO;
}
//pull the forms window to the top

if (include-Nav)
{

winset(Sh->forms-windowid);

winpopO;

winset(Sh->sbbwindowid);

}//end if control key pushed

else

1

160

Sh->fuizzsyl.Aisplay = Sh->fuzz-cyl-display;

}II/end just F1 I key pushed

break;

void SBB.App ::propagate (int& exitfiag)

if (include-FLS)

FLSCyl[O].propagate-yLS-players(FuzzySen, FLS-CyI,
Ov, &terrain, attached-index,

Sh->switch-fuzz-cyl~display, Sh->fuzzscyl display);

Sh->switch-fuzzsvl-display = FALSE;

SimMan.update...stateo;

if(Sh->clipjflag)

ClipPlaneSet(Sh.>dip-index)

else

NetMan.kill~neto;

161

int parse-command (int argc. char *argvt])

{

//command line option

int option;

int returnval = TRUE;

cerr << ISBB setup:" << "\n";

while ((option = getopt(argc, argv, "d:3gblsfv:tNnzh")) != -1)

{

case 'z': H FLS form (for FLS app)

includeFLS TRUE;

cerr << "\t* "<<"enabled: FLS" << "\n";
break;

case Ii': // help

cerr << USAGE << *\n";

returnval = FALSE;

break;

default:

break;

}

I

return (returnval);

int main (int argc, char *argv[])

{

int exitflag = 0;

int next;

MacSounds* SBBMainSound;

SBBMain_Sound = new MacSoundso;

162

if (!parsesommand (argc, argv)

exit (0

/1Initialize Performer

pflnito;

if (includeFLS) FLSCylIIOl-ini(-sharedO;

SBBMainSound->Play--ound(CHANi1, GoodMorning, 7)

if (textures-enabled) pfFilePath(file-path)

for (i=O; i<3; i++)

Cylti] .Coords = pfCoord*) pfMalloc (sizeof(ptCoord). pfGetSharedArena())

filAssign space and initialize the FLS players
if (includeFLS)

FuzzySen.configo;

FLS~yl[O].assign-space and-initializeFLS~players(

FuzzySen, FLS-Cyl, &Renderobj, &SimMan,

&Locafl~odefl~gr);

IIAssign a simple terrain for this simulation

appl->Ter = &terrain;

Ov[1].terrain = &terrain;

163

exit(O);

}1/1 end main

6. Compiling and Linking

There is a main makefile in the SBB/pfmr directory. This make file will create the

SBB with the Sentinel extension. There are also two scrip files, MakeAll4 and MakeAUl5,

that will do a complete cleaning, make depend, recompile, create the necessary Sentinel

libraries, compile the SBB application, and link every together. User MakeAll4 with

machines that are using the OS4 operating system and MakeAI5 for machines using the

OS5 operating system.

Also, inside of each structured program unit's directory, there is a makefile that will

compile the library associated with that structured program unit. The makefile will compile

the library and place it in the appropriate directory needed by the SBB application's

makefile. Have fun!!

164

BIBLIOGRAPHY

[Air90] Airey, John M.; Rohlf, John H.; and Brooks, Frederick P. Jr. "Towards Image
Realism with Interactive Update Rates in Complex Virtual Building
Environments," Proceedings of the 1990 Symposium on Interactive 3D
Graphics, Snowbird, Utah, pp. 41-50,25 - 28 March 1990.

[Ali92] Aliev, R.A.; Aliev, F.T.; and Babaev, M.D.. "The Synthesis Of A Fuzzy
Coordinate-Parametric Automatic Control System For An Oil-Refinery
Unit,"Fuzzy Sets and Systems, Volume 47 Number 2 (April 1992)

[And8l1 Anderson, J.R. (ed.). Cognitive Skills and Their Acquisition, Hillsdale, NJ:
Erlbaum., 1981

[App92a] Appino, Perry A.; Lewis, J. Bryan; Ling, Daniel T.; Rabenhorst, David A.;
and Codella, Christopher F. "An Architecture for Virtual Worlds,"
Presence, vol. 1, no. 1, pp. 1-17, Winter 1992.

[App92b] Appino, Perry A.; Lewis, J. Bryan; Koved, Lawrence; Ling, Daniel T.;
Rabenhorst, David A.; and Codella, Christopher F. "An Architecture for
Virtual Worlds," IBM Ti. Watson Research Center Research Report,
Yorktown Heights, NY, 1992.

[BBN92I Bolt, Beranek and Newman, Inc. The SIMNET Network and Protocols. BBN
Report no. 7627. 1992.

[Ben82] Benson, William H., An Application of Fuzzy Set Theory to Data Display.
Fuzzy Set and Possibility Theory Recent Developments, pp. 429-438, 1982.

[Ber93] Bergman, Lawrence D.; Richardson, Jane S.; Richardson, David C.; and
Brooks, Frederick P. Jr. "VIEW - An Exploratory Molecular Visualization
System with User-Definable Interaction Sequences," Computer Graphics,
vol. 27, pp. 117-126, August 1993.

[Bes92] Bess, Rick D. "Image Generation Implications for Networked Tactical
Training Systems," Proceedings of the IMAGE VI Conference, Phoenix,
Arizona, pp. 77-86, 14 - 17 July 1992.

[Bla9O] Blanchard, Chuck; Burgess, Scott; Harvill, Young; Lanier, Jaron; Lasko, Ann;
Oberman, Mark; and Teitel, Michael. "Reality Built for Two: A Virtual
Reality Tool," Proceedings of the 1990 Symposium on Interactive 3D
Graphics, Snowbird, Utah, pp. 35-36,25 - 28 March 1990.

[Bla92] Blau, Brian; Hughes, Charles E.; Moshell, J. Michael; and Lisle, Curtis.
"Networked Virtual Environments," Proceedings of the 1992 Symposium on
Interactive 3D Graphics, Cambridge, Massachusetts, pp. 157-160, 29 March
- 1 April 1992.

165

[Bla93] Blau, Brian; Moshell, J. Michael; and McDonald, Bruce. "The DIS
(Distributed Interactive Simulation) Protocols and their Application to
Virtual Environments," Proceedings of the Meckier Virtual Reality '93
Conference, San Jose, California, 19 - 21 May 1993.

[Bro86] Brooks, F.P. "Walkthrough - A Dynamic Graphics System for Simulating
Virtual Buildings." Proceedings of the 1986 Workshop on Interactive 3D
Graphics, Chapel Hill, North Carolina, pp. 9-21, 1986.

[Bro88) Brooks, Frederick P. Jr. "Grasping Reality Through Illusion - Interactive
Graphics Serving Science," Human Factors in Computing Systems: CHI
'88 Conference Proceedings, Washington, D.C., pp. 1-11, 15 - 19 May
1988.

[Bro9O] Brooks, F.P; Ouh-Young, Ming; and Batter, J. "Project GROPE - Haptic
Displays for Scientific Visualization," Computer Graphics, vol. 24, no. 4,
pp. 177-185, August 1990.

[Bry91I Bryson, Steve and Levit, Creon. "The Virtual Windtunnel: An Environment
for the E .ploration of Three-Dimensional Unsteady Flows," Proceedings of
Visualization '91, San Diego, California, pp. 17-24, 22 - 25 October 1991.

[Bry92a] Bryson, Steve and Levit, Creon. "The Virtual Windtunnel: An Environment
for the Exploration of Three-Dimensional Computer-Generated Flowfields,"
Proceedings of the IMAGE VI Conference, Phoenix, Arizona, pp. 137-139,
14- 17 July 1992.

[Bry92b] Bryson, Steve. "Virtual Spacetime: An Environment for the Visualization of
Curved Spacetimes via Geodesic Flows," Proceedings of Visualization '92,
Boston, Massachusetts, pp. 291-298, 19 - 23 October 1992.

[But92] Butterworth, Jeff; Davidson, Andrew; Hench, Stephen; and Olano, T. Marc.
"3DM: A Three Dimensional Modeler Using a Head-Mounted Display,"
Proceedings of the 1992 Symposium on Interactive 3D Graphics,
Cambridge, Massachusetts, pp. 135-138, 29 March - 1 April 1992.

[Car73] CasoP.W.; Isley, R.N.; and Jolley, O.B. Research on Synthetic Training:
Device Evaluation and Training Program Development, (Tech. Report 73-
20). Alexandria, VA: Human Resources Research Organization.

[Car92] Carlson, R.A., Lundy, D.H., Schneider, W., "Strategy Guidance and Memory
Aiding in Learning a Problem-Solving Skill," Human Factors, vol. 34, no.
2, pp. 129-145, April, 1992.

[Chu89l Chung, J.C.; Harris, M.R.; Brooks, F.P.; Fuchs, H.; Kelley, M.T.; Hughes, J.;
Ouh-young, M.; Cheung, C.; Holloway, R.L.; and Pique, M. "Exploring
Virtual Worlds with Head-Mounted Displays," Three-Dimensional
Visualization and Display Technologies, SPIE vol. 1083, Los Angeles,
California, pp. 42-52, 18-20 January 1989.

166

[Cod92] Codella, Christopher; Jalili, Reza; Koved, Lawrence; Lewis, J. Bryan; Ling,
Daniel T.; Lipscomb, James S.; Rabenhorst, David A.; Wang, Chu P.;
Norton, Alan; Sweeney, Paula; Turk, Greg. "Interactive Simulation in a
Multi-Person Virtual World," Human Factors in Computing Systems,
SIGCHI '92 Conference Proceedings, Monterey, California, pp. 329-334, 3
- 7 May 1992.

[Fah93l Fahlen, Lennart E.; Brown, Charles Grant; Stahl, Olov; and Carlsson,
Christer. "A Space Based Model for User Interaction in Shared Synthetic
FEnvironments," Conference on Human factors in Computing Systems,
Amsterdam, The Netherlands, pp. 4 3 -5 0 , 2 4 - 29 April 1993.

[Fa193] Falby, John S.; Zyda, Michael J.; Pratt, David R.; and Mackey, Randy L.
"NPSNET: Hierarchical Data Structures for Real-Time Three-Dimensional
Visual Simulation," Computers & Graphics, vol. 17, no. 1, pp. 65-69.
January 1993.

[Fei90a] Feiner, Steven and Beshers, Clifford. "Visualizing n-Dimensional Virtual
Worlds with n-Vision," Proceedings of the 1990 Symposium on Interactive
3D Graphics, Snowbird, Utah, pp. 37-38, 25 - 28 March 1990.

[Fei90b] Feiner, Steven and Beshers, Clifford. "Worlds Within Worlds: Metaphors for
Exploring n-Dimensional Virtual Worlds," Proceedings of UIST '90, The
Third Annual ACM SIGGRAPH Symposium on User Interface Software and
Technology, Snowbird, Utah, pp. 76-83, 3 - 5 October 1990.

[Fer92] Ferguson, Robert L.; Brasch, Randy; Lisle, Curtis R.; and Goldiez, Brian.
"Interoperability of Visual Simulation Systems," Proceedings of the IMAGE
VI Conference, Phoenix, Arizona, pp. 517-526, 14 - 17 July 1992.

[Fis86a] Fisher, S.S.; McGreevy, M.; Humphries, J.; and Robinett, W. "A Virtual
Environment Display System." Proceedings of the 1986 Workshop on
Interactive 3D Graphics, Chapel Hill, North Carolina, pp. 77-87, 1986.

[Fis86b] Fisher, S.S.; McGreevy, M.; Humphries, J.; and Robinett, W. "Virtual
Workstation: A Multimodal, Stereoscopic Display Environment,"
Intelligent Robots and Computer Vision, SPIE vol. 726, Cambridge,
Massachusetts, pp. 517-522,28 - 31 October 1986.

[Fo190] Foley, James D., et al. Computer Graphics: Principles and Practice (2
Edition). Addison-Wesley Publishing Company, 1990.

[Fun92] Funkhouser, T. A., Sequin, C. H., and Teller, S. J. "Management of Large
Amounts of Data in Interactive Building Walkthroughs." 1992 Symposium
on Interactive 3D Graphics, Computer Graphics, vol.???, no. ???, pp. 11-
20, March 1992.

[Gar92] Garcfa, J.; Pazos, J.; Rios, J.; and Yagile. "Methodology Of Linguistics
Evaluation In Risk Situations Using Fuzzy Techniques," Fuzzy Sets and

Systems, Volume 48 Number 2 (June 1992)

167

[Har91] Harvey, Edward P. and Schaffer, Richard L. "The Capability of the
Distributed Interactive Simulation Network Standard to Support High
Fidelity Aircraft Simulation." Proceedings of the Thirteenth
Interservice/Industry Training Systems Conference, Orlando, Florida, pp.
127-135, 1991.

[Hil92] Hill, Ralph D. "The Abstraction-Link-View Paradigm: Using Constraints to
Connect User Interfaces to Applications," Human Factors in Computing
Systems, SIGCHI '92 Conference Proceedings, Monterey, California, pp.
335-342,3 - 7 May 1992.

[Hit92] Hitchner, Lewis E. "Virtual Planetary Exploration: A Very Large Virtual
Environment." Implementation of Immersive Virtual Environments Course
Notes, SIGGRAPH 92.

[Hob93] Hobbs, Bruce A. and Stytz, Martin R. "A User Interface to a True 3-D Display
Device," Proceedings of HCI International '93: 5th International
Symposium on Human-Computer Interaction, Orlando, Florida, pp. ????, 8 -
13 August 1993.

[Kin77] King, PJ. and Mamdani, E.H. "The Application of Fuzzy Control Systems to
Industrial Processes," Automata, vol. 13, no. 3, pp. 235-242, 1977.

[Kos92] Kosko, Bart. Neural Networks and Fuzzy Systems: A Dynamical Systems
Approach to Machine Intelligence, Prentice Hall: Englewood Cliffs, New
Jersey, 1992.

[Lee90] Lee, Chuen Chien. "Fuzzy Logic in Control Systems: Fuzzy Logic
Controller - Part 1," IEEE Transactions on Systems, Man, and Cybernetics,
vol. 20, no. 2, pp. 404-418, April 1990.

[Lev92] Levit, Creon and Bryson, Steve. "Lessons Learned While Implementing the
Virtual Windtunnel Project," Implementation of Immersive Virtual
Environments Course Notes, SIGGRAPH 92.

[Mam74] Mamdani, E.H. "Application of Fuzzy Algorithms for the Control of a
Dynamic Plant," Proceedings of the IEEE, vol. 121, no. 12, pp. 1585-1588,
1974.

[McD90] McDonald, L.B., Pinon, C., Glasgow, R., and Danisas, K. "The
Standardization of Protocol Data Units for Interoperability of Defense
Simulations," Proceedings of the Twelfth lnterservice/lndustry Training
Systems Conference, Orlando, Florida, pp. 93-102, 6 - 8 November 1990.

[McD91] McDonald, L. Bruce; Bouwens, Christina P; Hofer, Ronald; Wiehagen, Gene;
Danisas, Karen; and Shiflett, James. "Standard Protocol Data Units for
Entity Information and Interaction in a Distributed Interactive Simulation."
Proceedings of the Thirteenth Interservice/Industry Training Systems
Conference, Orlando, Florida, pp. 119-126, 1991.

[McL91] McLendon, Patricia. Graphics Library Programming Guide. Mountain
View, CA: Silicon Graphics, Inc., 1991.

168

[McL92] McLendon, Patricia. IRIS Performer Programming Guide. Mountain View,
CA: Silicon Graphics, Inc., 1992.

[Mer9O] Mercer, Lynn; Prusinkiewicz, Przemyslaw; and Hanan, James. "The Concept
and Design of a Virtual Laboratory," Graphics Interface '90, Halifax, Nova
Scotia, pp. 149-155, 14 - 18 May 1990.

[Mic88] Michel, R.R. and Reidel, S.L., Effects of Expertise and Cognitive Style on
Information Use in Tactical Decision Making, (Tech. Report 806), U.S.
Army Research Institute, AD-A203 462, June 1988.

[Mi188] Miller, Duncan C.; Pope, Arthur R.; and Waters, Rolland M. "Long-haul
Networking of Simulators," Proceedings of the Eighth Interservice/Industry
Training Systems Conference, Orlando, Florida, pp. 577-582, 1988.

[Min88] Ming, 0. Y., Pique, M., Hughes, J., Brooks, Jr., F. P. "Using a Manipulator
for Force Display in Molecular Docking." IEEE Robotics and Automation
Conference. 1988.

[Mos86] Mosher, Charles E. Jr.; Sherouse, George W.; Mills, Peter H.; Novins, Kevin
L.; Pizer, Stephen M.; Rosenman, Julian G.; and Chaney, Edward L. "The
Virtual Simulator," Proceedings of the 1986 Workshop on Interactive 3D
Graphics, Chapel Hill, North Carolina, pp. 37-42,23 - 24 October 1986.

[Ove92] Overmars, Mark H. Forms Library v2.1 - A Graphical User Interface Toolkit
for the Silicon Graphics Workstations. Utrecht University, Netherlands,
Department of Computer Science, 1992. email mmrkov@csruu.nl.

[Pau9l] Pausch, Randy. "Virtual Reality on Five Dollars a Day," Human Factors in
Computing Systems: CHI '91 Conference Proceedings, New Orleans,
Louisiana, pp. 265-270, 27 April - 2 May 1991.

[Pic92] Pickover, Clifford A. "A Vacation on Mars - An Artist's Journey in a
Computer Graphics World," Computers & Graphics, vol. 16, no. 1, pp. 9-
13, January 1992.

[Pra92] Pratt, David R.; Zyda, Michael J.; Mackey, Randall L.; and Falby, John S.
"NPSNET: A Networked Vehicle Simulation with Hierarchical Data
Structures," Proceedings of the IMAGE VI Conference, Phoenix, Arizona,
pp. 217-225, 14 - 17 July 1992.

[Pra93] Pratt, David R.; Walter, Jon C.; Warren, Patrick T.; and Zyda, Michael J.
"NPSNET: Janus-3D Providing Three-Dimensional Displays for a Two-
Dimensional Combat Model," Fourth IEEE Conference on Al, Simulation,
and Planning in High Autonomy Systems, Tucson, Arizona, pp. 31-39, 20 -
22 September 1993.

[Qia92] Qiao, Wu Zhi; Zhuang, Wang Pei; and Heng, Teh Hoon. "A Rule Self-
Regulating Fuzzy Controller,"Fuzzy Sets and Systems, Volume 47

Number 1 (April 1992)

169

[Ram92] Ramakrishnan, R. and Rao, C J.M.. "The Fuzzy Weighted Additive
Rule,"Fuzzy Sets and Systems, Volume 46 Number 2 (March 1992)

[Ras86] Rasmussen, J. Information Processing and Human-Machine Interaction: An
Approach to Cognitive Engineering. Amsterdam: North Holland, 1986.

[Sch82] Schmandt, Christopher. "Interactive Three-Dimensional Computer Space,"
Processing and Display of Three-Dimensional Data, SPIE vol. 367, San
Diego, California, pp. 155-159, 26 - 27 August 1982.

[She92] Sheasby, Steven M. Management of SIMNET and DIS Entities in Synthetic
Environments. MS thesis, Air Force Institute of Technology, 1992.

[Smi91] Smith, Bradford. "The Use of Animation to Analyze and Present Information
About Complex Systems," Proceedings of Virtual Reality '91, The Second
Annual Conference on Virtual Reality, Artificial Reality, and Cyberspace,
San Francisco, California, pp. 190-199, 23 - 25 September 1991.

[Sny93] Snyder, Mark. ObjectSim Framework ???????. MS thesis, Air Force

Institute of Technology, 1993.

[Sol9l] Solso, R.L., Cognitive Psychology, 3rd ed., Allyn and Bacon, 1991.

[So192] Soltz, Brian B., Macintosh Sound Generation Facility 2.0. Special Study, Air
Force Institute of Technology, 1992.

[Tay93] Taylor, Russell M.; Robinett, Warren; Chi, Vernon L.; Brooks, Frederick P.
Jr.; Wright, William V.; Williams, R. Stanley; and Snyder, Eric J. "The
Nanomanipulator: A Virtual-Reality Interface for a Scanning Tunneling
Microscope," Computer Graphics, vol. 27, pp. 127-134, August 1993.

[Tel9l] Teller, S. J. and Sequin, C. H. "Visibility Preprocessing For Interactive
Walkthroughs." Computer Graphics, vol. 25, no. ???, pp. ?????, ?????,
August 1991.

[Tho31] Thorndike, E.L. Human Learning. New York: Century, 1931.

[Tho88] Thorpe, Jack. "Warfighting with SIMNET - A Report From the Front,"
Proceedings of the 10th Interservice/Industry Training Systems Conference,
Orlando, Florida, pp. 263-273, 1988.

[Was72] Wason, P.C. and Johnson-Laird, P.N. Psychology of Reasoning: Structure
and Content. London: Batsford, 1972.

[Wei89] Weimer, David and Ganapathy, S.K. "A Synthetic Visual Environment with
Hand Gesturing and Voice Input," Human Factors in Computing Systems:
CHI '89 Conference Proceedings, Austin, Texas, pp. 235-240, 30 April - 3
May 1989.

[Wi193] Wilson, Kirk. Synthetic Battle Bridge ???????. MS thesis, Air Force
Institute of Technology, 1993.

170

(Zad73] Zadeh, Lofti A. "Outline of a New Approach to the Analysis of Complex
Systerms and Decision Processes," IEEE Transactions on Systems, Man, and
Cybernetics, vol. SMC-3, no. 1, pp. 28-44, January 1973.

[Zel92] Zeltzer, David and Drucker, Steven. "A Virtual Environment System for
Mission Planning," Proceedings of the IMAGE VI Conference, Phoenix,
Arizona, pp. 125-134, 14- 17 July 1992.

[Zyd92] Zyda, Michael J.; Pratt, David R.; Monahan, James G.; and Wilson, Kalin P.
"NPSNET: Constructing a 3D Virtual World," Proceedings of the 1992
Symposium on Interactive 3D Graphics, Cambridge, Massachusetts, pp.
147-156,29 March- I April 1992.

171

VITA

Brian B. Soltz was born on May 12, 1961, in Atlantic City, New Jersey.

On March 15, 1982, Brian entered the United States Air Force as a Morse Code

Systems Operator (208X0). In March, 1983, Brian became a instructor in the

Morse Systems Training School at Keelser AFB, Mississippi. In April 1984,

Brian was accepted by the Airman's Education Commissioning Program (AECP)
and sent to Rutgers University. In May 1988, Brian received his Bachelor of

Science in Electrical Engineering from Rutgers University.
In September 1988, Brian was commissioned a second lieutenant in the

Air Force through the Officer Training School at Lackland AFB, Texas. In

September 1988, Brian was stationed at Wright-Patterson AFB, Ohio as a C3

Systems Analyst. In 1992, Brian was accepted to the Air Force Institute of
Technology, where he completed his Master of Science degree in Computer

Science in 1993.

172

December 1993 Master's Thesis

GRAPHICAL TOOLS FOR SITUATIONAL AWARENESS
ASSISTANCE FOR LARGE SYNTHETIC BATTLE SPACES

Brian B. Soltz, Capt, USAF

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCS/ENG/93D-21

ARPA/ASTO
3701 North Fairfax Drive
Arlington, Va 22203

Approved for public release; distribution unlimited

As virtual environments grow in complexity and size, users are increasingly challenged in assessing situations in
large-scale virtual environment. This occurs because of the difficulty in determining where to focus attention
and assimilating and assessing the information as it floods in. One technique for providing this type of assistance
is to provide the user with a first-person, immersive, synthetic environment observation post, that permits
unobtrusive observation of the environment without interfering with the activity in the environment. However,
for large, complex synthetic environments, this type of support is not sufficient because the portrayal of raw,
unanalyzed data in the virtual space can overwhelm the user. To address these problems, this thesis investigates
the types of situational awareness assistance that needs to be provided to users of large-scale virtual environments.
A technique developed, is to allow a user to place analysis modules throughout the virtual environment. Each
module provides summary information to the user concerning the status of the section of the virtual environment
that the module was assigned to monitor. The prototype system, called the Sentinel, is embedded within a
virtual environment observatory and provides situational awareness assistance for users within a large virtual
environment.

Fuzzy Logic, Situational Awareness, Synthetic Environments, 184
Object-Oriented, Computer Graphics

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

